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“Knowing is not enough; we must apply.
Willing is not enough; we must do.”

—GOETHE
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FOREWORD

In 2006, the National Academy of Medicine (NAM) established the Roundtable 
on Evidence-Based Medicine for the purpose of providing a trusted venue for 

national leaders in health and health care to work cooperatively toward their 
common commitment to effective, innovative care that consistently generates 
value for patients and society. The goal of advancing a “Learning Health System” 
quickly emerged and was defined as “a system in which science, informatics, 
incentives, and culture are aligned for continuous improvement and innovation, 
with best practices seamlessly embedded in the delivery process and new 
knowledge captured as an integral by-product of the delivery experience.”1

To advance this goal, and in recognition of the increasingly essential role that 
digital health innovations in data and analytics contribute to achieving this goal, 
the Digital Health Learning Collaborative was established. Over the life of the 
collaborative, the extraordinary preventive and clinical medical care implications 
of rapid innovations in artificial intelligence (AI) and machine learning emerged 
as essential considerations for the consortium. The publication you are now 
reading responds to the need for physicians, nurses and other clinicians, data 
scientists, health care administrators, public health officials, policy makers, 
regulators, purchasers of health care services, and patients to understand the basic 
concepts, current state of the art, and future implications of the revolution in AI 
and machine learning. We believe that this publication will be relevant to those 
seeking practical, relevant, understandable, and useful information about key 
definitions, concepts, applicability, pitfalls, rate-limiting steps, and future trends in 
this increasingly important area.

Michael Matheny, M.D., M.S., M.P.H., and Sonoo Thadaney Israni, M.B.A., 
have assembled a stellar team of contributors, all of whom enjoy wide respect 
in their fields. Together, in this well-edited volume that has benefitted from the 
thorough review process ingrained in the NAM’s culture, they present expert, 

1 See https://nam.edu/wp-content/uploads/2015/07/LearningHealthSystem_28jul15.pdf.

https://nam.edu/wp-content/uploads/2015/07/LearningHealthSystem_28jul15.pdf
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understandable, comprehensive, and practical insights on topic areas that include 
the historical development of the field; lessons learned from other industries; how 
massive amounts of data from a variety of sources can be appropriately analyzed 
and integrated into clinical care; how innovations can be used to facilitate 
population health models and social determinants of health interventions; the 
opportunities to equitably and inclusively advance precision medicine; the 
applicability for health care organizations and businesses to reduce the cost of care 
delivery; opportunities to enhance interactions between health care professionals 
and patients, families, and caregivers; and the role of legal statutes that inform the 
uptake of AI in health care.

As the co-chairs of the Digital Health Learning Collaborative, we are excited 
by the progress being demonstrated in realizing a virtuous cycle in which the 
data inevitably produced by every patient encounter might be captured into a 
“collective memory” of health services to be used to inform and improve the 
subsequent care of the individual patient and the health system more generally. 
Enormous datasets are increasingly generated not only in the formal health care 
setting, but also from medical and consumer devices, wearables, and patient-
reported outcomes, as well as environmental, community, and public health 
sources. They include structured (or mathematically operable) data as well as text, 
images, and sounds. The landscape also includes data “mash-ups” from commercial, 
legal, and online social records.

AI has been the tool envisioned to offer the most promise in harvesting 
knowledge from that collective memory, and as this volume demonstrates, some 
of that promise is being realized. Among the most important of these promises 
in the near term is the opportunity to assuage the frustration of health care 
providers who have been clicking away on electronic health records with modest 
benefit beyond increased data transportability and legibility. Our hope is that 
AI will be the “payback” for the investment in both the implementation of 
electronic health records and the cumbersomeness of their use by facilitating 
tasks that every clinician, patient, and family would want, but are impossible to do 
without electronic assistance—such as monitoring a patient for emergent sepsis 
24 × 7 × 365 and providing timelier therapy for a condition in which diagnostic 
delay correlates with increased risk of death.

However, we also appreciate that AI alone cannot cure health care’s ills and 
that new technologies bring novel and potentially under-appreciated challenges. 
For example, if a machine learning algorithm is trained with data containing 
a systematic bias, then that bias may be interpreted as normative, exacerbating 
rather than resolving disparities and inequities in care. Similarly, association of 
data does not prove causality, and it may not even be explanatory, suggesting that 
a simultaneous revolution in research methods is also necessary. Finally, the mere 
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existence of substantial and sensitive data assets raises concerns about privacy and 
security. Aspiring to the promise of AI requires both continuing innovation and 
attention to the potential perils.

In our opinion, this publication presents a sober and balanced celebration of 
accomplishments, possibilities, and pitfalls. We commend Drs. Michael McGinnis 
and Danielle Whicher for their thoughtful sponsorship of the NAM Consortium 
and Digital Health Learning Collaborative, Dr. Matheny and Mrs. Thadaney Israni 
for their leadership in producing this volume, and to all the contributors who 
have produced an exceptional resource with practical relevance to a wide array 
of key stakeholders.

Jonathan B. Perlin, M.D., Ph.D., MACP
Reed V. Tuckson, M.D., FACP

Co-Chairs, Digital Learning Collaborative, Consortium on Value and  
Science-Driven Health Care, National Academy of Medicine
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SUMMARY

The emergence of artificial intelligence (AI) as a tool for better health care 
offers unprecedented opportunities to improve patient and clinical team 

outcomes, reduce costs, and impact population health. Examples include but are 
not limited to automation; providing patients, “fRamily” (friends, family, and 
unpaid caregivers), and health professionals with an understandable synthesis 
of complex health information; and recommendations and visualization of 
information for shared decision making.

While there have been a number of promising examples of AI applications in health 
care, we believe it is imperative to proceed with caution, else we may end up with user 
disillusionment and another AI winter, and/or further exacerbate existing health- 
and technology-driven disparities. This Special Publication, Artificial Intelligence in 
Health Care: The Hope, the Hype, the Promise, the Peril synthesizes current knowledge to 
offer a reference document for relevant health care stakeholders such as AI model 
developers, clinical implementers, clinicians and patients, regulators, and policy 
makers, to name a few. It outlines the current and near-term AI solutions; highlights 
the challenges, limitations, and best practices for AI development, adoption, and 
maintenance; offers an overview of the legal and regulatory landscape for AI tools 
designed for health care application; prioritizes the need for equity, inclusion, and a 
human rights lens for this work; and outlines key considerations for moving forward. 
The major theses are summarized in the section below.

POPULATION-REPRESENTATIVE DATA ACCESSIBILIT Y, 
STANDARDIZATION, AND QUALIT Y ARE VITAL

AI algorithms must be trained on population-representative data to achieve 
performance levels necessary for scalable “success.” Trends such as the cost for 
storing and managing data, data collection via electronic health records, and 
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exponential consumer health data generation have created a data-rich health 
care ecosystem. However, this growth in health care data is hampered by the 
lack of efficient mechanisms for integrating and merging these data beyond their 
current silos. While there are multiple frameworks and standards in place to help 
aggregate and achieve sufficient data volume for AI use of data at rest (such as 
mature health care common data models) and data in motion (such as Health 
Level Seven International Fast Healthcare Interoperability Resources [HL7 
FHIR]), they need wider adoption to support AI tool development, deployment, 
and maintenance. There continue to be issues of interoperability and scale of data 
transfers due to cultural, social, and regulatory reasons. Solutions will require the 
engagement of all relevant stakeholders. Thus, the wider health care community 
should continue to advocate for policy, regulatory, and legislative mechanisms that 
improve equitable, inclusive data collection and aggregation, and transparency 
around how patient health data may be best utilized to balance financial incentives 
and the public good.

ETHICAL HEALTH CARE, EQUIT Y, AND INCLUSIVIT Y 
SHOULD BE PRIORITIZED

Fulfilling this aspiration will require ensuring population-representative datasets 
and giving particular priority to what might be termed a new Quintuple Aim of 
Equity and Inclusion for health and health care (see Figure S-1). Else, the scaling 

FIGURE S-1 | Advancing to the Quintuple Aim.
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possible with AI might further exacerbate the considerable existing inequities in 
health outcomes at a monumental scale. A single biased human or organizational 
impact is far less than that of global or national AI.

Prioritizing equity and inclusion should be a clearly stated goal when 
developing and deploying AI in health care. There are many high-profile 
examples of biased AI tools that have damaged the public’s trust in these systems. 
It is judicious for developers and implementers to evaluate the suitability of the 
data used to develop AI tools and unpack the underlying biases in the data, to 
consider how the tool should be deployed, and to question whether various 
deployment environments could adversely impact equity and inclusivity. There 
are widely recognized inequities in health outcomes due to the variety of social 
determinants of health and perverse incentives in the existing health care system. 
Unfortunately, consumer-facing technologies have often worsened historical 
inequities in other fields and are at risk of doing so in health care as well.

THE DIALO GUE AROUND TRANSPARENCY AND 
TRUST SHOULD CHANGE TO BE D OMAIN- AND 

USE-CASE DIFFERENTIAL

Transparency is key to building this much needed trust among users and 
stakeholders, but there are distinct domains with differential needs of transparency. 
There should be full transparency on the composition, semantics, provenance, and 
quality of data used to develop AI tools. There also needs to be full transparency 
and adequate assessment of relevant performance components of AI. However, 
algorithmic transparency may not be required for all cases. AI developers, 
implementers, users, and regulators should collaboratively define guidelines for 
clarifying the level of transparency needed across a spectrum. These are key issues 
for regulatory agencies and clinical users, and requirements for performance are 
differential based on risk and intended use. Most importantly, we suggest clear 
separation of data, algorithmic, and performance reporting in AI dialogue, and the 
development of guidance in each of these spaces.

NEAR-TERM FO CUS SHOULD BE ON AUGMENTED 
INTELLIGENCE RATHER THAN FULL AUTOMATION

Some of the AI opportunities include supporting clinicians undertaking tasks 
currently limited to specialists; filtering out normal or low acuity clinical cases 
so that specialists can work at the top of their licensure; helping humans address 
inattention, microaggressions, and fatigue; and improving business process 
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automation. Ensuring human-centered AI tools includes accepting that human 
override is important for developing user trust because the public has an 
understandably low tolerance for machine error and that AI tools are being 
implemented in an environment of inadequate regulation and legislation. 
The near-term dialogue around AI in health care should focus on promoting, 
developing, and evaluating tools that support humans rather than attempting to 
replace them with full automation.

DEVELOP AND DEPLOY APPROPRIATE 
TRAINING AND EDUCATIONAL PRO GRAMS TO 

SUPPORT HEALTH CARE AI

In order to benefit from, sustain, and nurture AI tools in health care we need 
a thoughtful, sweeping, and comprehensive expansion of relevant training and 
educational programs. Given the scale at which health care AI systems could 
change the medical domain, the educational expansion must be multidisciplinary 
and engage AI developers, implementers, health care system leadership, frontline 
clinical teams, ethicists, humanists, and patients and patient caregivers because 
each brings a core set of much needed requirements and expertise. Health care 
professional training programs should incorporate core curricula focused on 
teaching how to appropriately use data science and AI products and services. The 
needs of practicing health care professionals can be fulfilled via their required 
continuing education, empowering them to be more informed consumers. 
Additionally, retraining programs to address a shift in desired skill sets due to 
increasing levels of AI deployment and the resulting skill and knowledge 
mismatches will be needed. Last, but not least, consumer health educational 
programs, at a range of educational levels, to help inform consumers on health 
care application selection and use are vital.

LEVERAGE EXISTING FRAMEWORKS AND 
BEST PRACTICES WITHIN THE LEARNING HEALTH 

CARE SYSTEM, HUMAN FACTORS, AND 
IMPLEMENTATION SCIENCE

The challenges in operationalizing AI technologies into the health care systems 
are countless in spite of the fact that this is one of the strongest growth areas in 
biomedical research and impact. The AI community must develop an integrated 
best practice framework for implementation and maintenance by incorporating 
existing best practices of ethical inclusivity, software development, implementation 
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science, and human–computer interaction. This framework should be developed 
within the context of the learning health care system and be tied to targets and 
objectives. The cost and burden of implementing AI tools should be weighed 
against use case needs. AI tools should be pursued where other low-or no-
technology solutions will not do as well. Successful AI implementation will need 
the committed engagement of health care stakeholders—leaders, AI developers, 
AI implementers, regulators, humanists, patients, and families. Health delivery 
systems should have a robust and mature underlying information technology 
(IT) governance strategy in place prior to them embarking on substantial AI 
deployment and integration. Lastly, national efforts should be deployed to 
provide capacity for AI deployment in lower resource environments where IT 
and informatics capacities are less robust. Linked to the prior considerations, this 
would help lower the entry barrier for adoption of these technologies and help 
promote greater health care equity. Health care AI could also go beyond the 
current limited biology-focused research to address patient and communal needs, 
expanding to meaningful and usable access of social determinants of health and 
psychosocial risk factors. AI has the potential (with appropriate consent) to link 
personal and public data for truly personalized health care.

BALANCING DEGREES OF REGULATION AND 
LEGISLATION OF AI TO PROMOTE INNOVATION, 

SAFET Y, AND TRUST

AI applications have an enormous ability to improve patient outcomes, but 
they could also pose significant risks in terms of inappropriate patient risk 
assessment, diagnostic error, treatment recommendations, privacy breaches, and 
other harms. Regulators should remain flexible, but the potential for lagging legal 
responses will remain a challenge for AI developers and deployers. In alignment 
with recent congressional and U.S. Food and Drug Administration developments 
and guidance, we suggest a graduated approach to the regulation of AI based 
on the level of patient risk, the level of AI autonomy, and considerations for 
how static or dynamic certain AI are likely to be. To the extent that machine 
learning–based models continuously learn from new data, regulators should adopt 
postmarket surveillance mechanisms to ensure continuing (and ideally improving) 
high-quality performance. Liability accrued when deploying AI algorithms will 
continue to be an emerging area as regulators, courts, and the risk-management 
industries deliberate. Tackling regulation and liability among AI adopters is vital 
when evaluating the risks and benefits. Regulators should engage stakeholders 
and experts to continuously evaluate deployed clinical AI for effectiveness and 
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safety based on real-world data. Throughout that process, transparency can help 
deliver better-vetted solutions. To enable both AI development and oversight, 
government agencies should invest in infrastructure that promotes wider, ethical 
data collection and access to data resources for building AI solutions within a 
priority of ethical use and data protection (see Figure S-2).

CONCLUSION

AI is poised to make transformative and disruptive advances in health care. 
It is prudent to balance the need for thoughtful, inclusive health care AI that 
plans for and actively manages and reduces potential unintended consequences, 
while not yielding to marketing hype and profit motives. The wisest guidance 
for AI is to start with real problems in health care, explore the best solutions by 
engaging relevant stakeholders, frontline users, and patients and their families—
including AI and non-AI options—and implement and scale the ones that meet 
our Quintuple Aim: better health, improved care experience, clinician well-being, 
lower cost, and health equity throughout the health care system and all forms of 
health care delivery.

FIGURE S-2 | Appropriately regulating artificial intelligence technologies will require 
 balancing a number of important variables, including intellectual property (IP), concerns 
around privacy and consent, risks and liability associated with the use of the technologies, and 
developmental processes.
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ARTIFICIAL INTELLIGENCE IN HEALTH CARE: 
THE HOPE, THE HYPE, THE PROMISE, THE PERIL

Michael Matheny, Vanderbilt University Medical Center and 
U.S. Department of Veterans Affairs; Sonoo Thadaney Israni, Stanford University; 

Danielle Whicher, National Academy of Medicine; and Mahnoor Ahmed, 
National Academy of Medicine

INTRODUCTION

Health care in the United States, historically focused on encounter-based care 
and treating illness as it arises rather than preventing it, is now undergoing a 
sweeping transformation toward a more population health–based approach. This 
transformation is happening via a series of changes in reimbursement. Among 
these changes are multiple eras of managed care and capitated population 
management explorations and increases in reimbursement for value-based care 
and prevention, both of which attempt to manage the overall health of the patient 
beyond treatment of illness (ASTHO, 2019; CMS, 2019; Kissam et al., 2019; 
Mendelson et al., 2017). Even so, U.S. health care expenditures continue to rise 
without corresponding gains in key health outcomes when compared to many 
similar countries (see Figure 1-1).

To assess where and how artificial intelligence (AI) may provide opportunities 
for improvement, it is important to understand the current context of and 
drivers for change in health care. AI is likely to promote automation and provide 
context-relevant information synthesis and recommendations (through a variety 
of tools and in many settings) to patients, “fRamilies” (friends and family unpaid 
caregivers), and the clinical team. AI developers and stakeholders should prioritize 
ethical data collection and use, and support data and information visualization 
through the use of AI (Israni and Verghese, 2019).

Technology innovations and funding are driven by business criteria such 
as profit, efficiency, and return on investment. It is important to explore how 
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these criteria will influence AI–health care development, evaluation, and 
implementation. This reality is further challenged by U.S. public and government 
views of health and health care, which oscillate between health care as social good 
and health care as economic commodity (Aggarwal et al., 2010; Feldstein, 2012; 
Rosenthal, 2017). These considerations are likely to drive some clear use cases 
in health care business operations: AI tools can be used to reduce cost and gain 
efficiencies through prioritizing human labor focus on more complex tasks; to 
identify workflow optimization strategies; to reduce medical waste (failure of care 
delivery, failure of care coordination, overtreatment or low-value care, pricing 
failure, fraud and abuse, and administrative complexity); and to automate highly 
repetitive business and workflow processes (Becker’s Healthcare, 2018) by using 
reliably captured and structured data (Bauchner and Fontanarosa, 2019). When 
implementing these tools, it is critical to be thoughtful, equitable, and inclusive 
to avoid adverse events and unintended consequences. This requires ensuring 
that AI tools align with the preferences of users and with end targets of these 
technologies, and that the tools do not further exacerbate historical inequities in 
access and outcomes (Baras and Baker, 2019).

Driven by a shift to reimbursement and incentives that support a population 
health management approach rather than a fee-for-service approach, innovation 
in AI technologies are likely to improve patient outcomes via applications, 
workflows, interventions, and support for distributed health care delivery outside 

FIGURE 1-1 | Life expectancy gains and increased health spending, selected high-income 
countries, 1995–2015.
SOURCE: Figure redrawn from OECD, 2017, Health at a Glance 2017: OECD Indicators, OECD Publishing, Paris, 

https://doi.org/10.1787/health_glance-2017-en.

https://doi.org/10.1787/health_glance-2017-en
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a traditional brick and mortar, encounter-based paradigm. The challenges of data 
accuracy and privacy protection will depend on whether AI technologies are 
regulated as a medical device or classed as an entertainment application. These 
consumer-facing tools are likely to support fundamental changes in interactions 
between health care professionals and patients and their caregivers. Tools such as 
single-lead electrocardiogram (ECG) surveillance or continuous blood glucose 
monitors will transform how health data are generated and utilized. They offer 
the opportunity to incorporate social determinants of health (SDoH) to identify 
patient populations for target interventions to improve outcomes and reduce 
health care utilization (Lee and Korba, 2017). Because SDoH interventions are 
labor-intensive, their scalability is poor. AI may reduce the cost of utilizing SDoH 
data and provide efficient means of prioritizing scarce clinical resources to impact 
SDoH (Basu and Narayanaswamy, 2019; Seligman et al., 2017).

All this presumes building solutions for health care challenges that will truly 
benefit from technological solutions, versus technochauvinism—a belief that 
technology is always the best solution (Broussard, 2018).

These topics are explored through subsequent chapters. This first chapter sets 
the stage by providing an overview of the development process and structure 
of this publication; defining key terms and concepts discussed throughout the 
remaining chapters; and describing several overarching considerations related 
to AI systems’ reliance on data and issues related to trust, equity, and inclusion, 
which are critical to advancing appropriate use of AI tools in health care settings.

NATIONAL ACADEMY OF MEDICINE

Given the current national focus on AI and its potential utility for improving 
health and health care in the United States, the National Academy of Medicine 
(NAM) Leadership Consortium: Collaboration for a Value & Science-Driven 
Learning Health System (Leadership Consortium)—through its Digital 
Health Learning Collaborative (DHLC)—brought together experts to explore 
opportunities, issues, and concerns related to the expanded application of AI in 
health and health care settings (NAM, 2019a,b).

NAM LEADERSHIP CONSORTIUM: COLLAB ORATION 
FOR A VALUE & SCIENCE-DRIVEN LEARNING 

HEALTH SYSTEM

Broadly, the NAM Leadership Consortium convenes national experts and 
executive-level leaders from key stakeholder sectors for collaborative activities 
to foster progress toward a continuously learning health system in which science, 
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informatics, incentives, and culture are aligned for enduring improvement and 
innovation; best practices are seamlessly embedded in the care process; patients and 
families are active participants in all elements; and new knowledge is captured as 
an integral by-product of the care experience. Priorities for achieving this vision 
include advancing the development of a fully interoperable digital infrastructure, 
the application of new clinical research approaches, and a culture of transparency 
on outcomes and cost.

The NAM Leadership Consortium serves as a forum for facilitating 
collaborative assessment and action around issues central to achieving the vision 
of a continuously learning health system. To address the challenges of improving 
both evidence development and evidence application, as well as improving the 
capacity to advance progress on each of those dimensions, Leadership Consortium 
members (all leaders in their fields) work with their colleagues to identify the 
issues not being adequately addressed, the nature of the barriers and possible 
solutions, and the priorities for action. They then work to marshal the resources 
of the sectors represented in the Leadership Consortium to work for sustained 
public–private cooperation for change.

DIGITAL HEALTH LEARNING COLLAB ORATIVE

The work of the NAM Leadership Consortium falls into four strategic action 
domains—informatics, evidence, financing, and culture—and each domain has 
a dedicated innovation collaborative that works to facilitate progress in that 
area. This Special Publication was developed under the auspices of the DHLC. 
Co-chaired by Jonathan Perlin from the Hospital Corporation of America and 
Reed Tuckson from Tuckson Health Connections, the DHLC provides a venue 
for joint activities that can accelerate progress in the area of health informatics 
and toward the digital infrastructure necessary for continuous improvement and 
innovation in health and health care.

PUBLICATION GENESIS

In 2017, the DHLC identified issues around the development, deployment, and 
use of AI as being of central importance to facilitating continuous improvement 
and innovation in health and health care. To consider the nature, elements, 
applications, state of play, key challenges, and implications of AI in health and health 
care, as well as ways in which the NAM might enhance collaborative progress, the 
DHLC convened a meeting at the National Academy of Sciences (NAS) building 
in Washington, DC, on November 30, 2017. Participants included AI experts 
from across the United States representing different stakeholder groups within 
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the health care ecosystem, including health system representatives; academics; 
practicing clinicians; representatives from technology companies; electronic 
health record (EHR) vendors; nonprofit organizations; payer representatives; and 
representatives from U.S. federal organizations, including the National Institutes 
of Health, the National Science Foundation, the U.S. Department of Defense, 
the U.S. Department of Veterans Affairs (VA), and the U.S. Food and Drug 
Administration. The agenda and participant list for this workshop are included as 
Appendix B.

Participants generated a list of practical challenges to the advancement and 
application of AI to improve health and health care (see Table 1-1). To begin 
to address these challenges, meeting participants recommended that the DHLC 
establish a working group on AI in health and health care. Formed in February 
2018, the working group is co-chaired by Michael Matheny of the Vanderbilt 
University Medical Center and the VA and Sonoo Thadaney Israni of Stanford 
University. The group’s charge was to accelerate the appropriate development, 
adoption, and use of valid, reliable, and sustainable AI models for transforming 
progress in health and health care. To advance this charge, members determined 

TABLE 1-1 | Practical Challenges to the Advancement and Application of Artificial 
Intelligence Tools in Clinical Settings Identified During the November 30, 2017, Digital 
Health Learning Collaborative Meeting

Challenge Description

Workflow integration Understand the technical, cognitive, social, and political factors in play 
and incentives impacting integration of artificial intelligence (AI) into 
health care workflows.

Enhanced explainability 
and interpretability

To promote integration of AI into health care workflows, 
consider what needs to be explained and approaches for ensuring 
understanding by all members of the health care team.

Workforce education Promote educational programs to inform clinicians about AI/machine 
learning approaches and to develop an adequate workforce.

Oversight and regulation Consider the appropriate regulatory mechanism for AI/machine 
learning and approaches for evaluating algorithms and their impact.

Problem identification 
and prioritization

Catalog the different areas of health care and public health where AI/
machine learning could make a difference, focusing on intervention-
driven AI.

Clinician and patient 
engagement

Understand the appropriate approaches for involving consumers 
and clinicians in AI/machine learning prioritization, development, 
and integration, and the potential impact of AI/machine learning 
algorithms on the patient–provider relationship.

Data quality and access Promote data quality, access, and sharing, as well as the use of both 
structured and unstructured data and the integration of non-clinical 
data as critical to developing effective AI tools.
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that they would work collaboratively to develop a reference document for 
model developers, clinical implementers, clinical users, and regulators and policy 
makers to:

• understand the strengths and limitations of AI;
•  promote the use of these methods and technologies within the health care 

system; and
•  highlight areas of future work needed in research, implementation science, and 

regulatory bodies to facilitate broad use of AI to improve health and health 
care.

PUBLICATION WORKFLOW

Authors were organized from among the meeting participants along expertise 
and interest, and each chapter was drafted with guidance from the NAM and 
the editors, with monthly publication meetings where all authors were invited 
to participate and update the group. Author biographies can be found in 
Appendix C.

As an initial step, the authors, the NAM staff, and co-chairs developed the 
scope and content focus of each of the chapters based on discussion at the initial 
in-person meeting. Subsequently, the authors for each chapter drafted chapter 
outlines from this guideline. Outlines were shared with the other authors, the 
NAM staff, and the working group co-chairs to ensure consistency in the level of 
detail and formatting. Differences and potential overlap were discussed before the 
authors proceeded with drafting of each chapter. The working group co-chairs 
and the NAM staff drafted content for Chapters 1 and 8, and were responsible for 
managing the monthly meetings and editing the content of all chapters.

After all chapters were drafted, the resulting publication was discussed at a 
meeting that brought together working group members and external experts 
at the NAS building in Washington, DC, on January 16, 2019. The goal of the 
meeting was to receive feedback on the draft publication to improve its utility to 
the field. Following the meeting, the chapter authors refined and added content 
to address suggestions from meeting participants. To improve consistency in 
voice and style across authors, an external editor was hired to review and edit 
the publication in its entirety before the document was sent out for external 
review. Finally, 10 external expert reviewers agreed to review the publication and 
provide critiques and recommendations for further improvement of the content. 
Working group co-chairs and the NAM staff reviewed all feedback and added 
recommendations and edits, which were sent to chapter authors for consideration 
for incorporation. Final edits following chapter author re-submissions were 
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resolved by the co-chairs and the NAM staff. The resulting publication represents 
the ideas shared at both meetings and the efforts of the working group.

IMPORTANT DEFINITIONS

Throughout the publication, authors use foundational terms and concepts 
related to AI and its subcomponents. To establish a common understanding, this 
section describes key definitions for some of these terms and concepts.

U.S. Health Care

This publication relies on preexisting knowledge and a general understanding 
of the U.S. health care domain. Due to limited space here, a table of key reference 
materials is included in Appendix A to provide the relevant health care context. 
This list is a convenient sample of well-regarded reference materials and selected 
publications written for a general audience. This list is not comprehensive.

Artif icial Intelligence

The term “artificial intelligence” (AI) has a range of meanings, from specific 
forms of AI, such as machine learning, to the hypothetical AI that meets criteria for 
consciousness and sentience. This publication does not address the hypothetical, 
as the popular press often does, and focuses instead on the current and near-future 
uses and applications of AI.

A formal definition of AI starts with the Oxford English Dictionary: “The 
capacity of computers or other machines to exhibit or simulate intelligent 
behavior; the field of study concerned with this,” or Merriam-Webster online: 
“1: a branch of computer science dealing with the simulation of intelligent 
behavior in computers, 2: the capability of a machine to imitate intelligent human 
behavior.” More nuanced definitions of AI might also consider what type of goal 
the AI is attempting to achieve and how it is pursuing that goal. In general, AI 
systems range from those that attempt to accurately model human reasoning to 
solve a problem, to those that ignore human reasoning and exclusively use large 
volumes of data to generate a framework to answer the question(s) of interest, 
to those that attempt to incorporate elements of human reasoning but do not 
require accurate modeling of human processes. Figure 1-2 includes a hierarchical 
representation of AI technologies (Mills, 2015).

Machine learning is a family of statistical and mathematical modeling 
techniques that uses a variety of approaches to automatically learn and improve 
the prediction of a target state, without explicit programming (e.g., Boolean rules) 
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FIGURE 1-2 | A summary of the domains of artificial intelligence.
SOURCE: Adapted with permission from a figure in Mills, M. 2015. Artificial Intelligence in Law—The State of 

Play in 2015? Legal IT Insider. https://www.legaltechnology.com/latest-news/artificial-intelligence-in-law-the-state-

of-play-in-2015.

https://www.legaltechnology.com/latest-news/artificial-intelligence-in-law-the-state-of
https://www.legaltechnology.com/latest-news/artificial-intelligence-in-law-the-state-of
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(Witten et al., 2016). Different methods, such as Bayesian networks, random 
forests, deep learning, and artificial neural networks use different assumptions 
and mathematical frameworks for how data are ingested, and learning occurs 
within the algorithm. Regression analyses, such as linear and logistic regression, 
are also considered machine learning methods, although many users of these 
algorithms distinguish them from commonly defined machine learning methods 
(e.g., random forests, Bayesian networks). The term “machine learning” is widely 
used by large businesses, but “AI” is more frequently used for marketing purposes. 
In most cases, “machine learning” is more appropriate. One way to represent 
machine learning algorithms is to subcategorize them by how they learn inference 
from the data (as shown in Figure 1-3). The subcategories are unsupervised learning, 
supervised learning, and reinforcement learning. These frameworks are discussed in 
greater detail in Chapter 5.

Natural language processing (NLP) enables computers to understand and 
organize human languages (Manning and Schütze, 1999). NLP needs to model 
human reasoning because it considers the meaning behind written and spoken 
language in a computable, interpretable, and accurate way. NLP has a higher bar 

FIGURE 1-3 | A summary of the most common methods and applications for training 
machine learning algorithms.
SOURCE: Reprinted with permission from Isazi Consulting, 2015. http://www.isaziconsulting.co.za/machine 

learning.html.

http://www.isaziconsulting.co.za/machinelearning
http://www.isaziconsulting.co.za/machinelearning


16  |  Artificial Intelligence in Health Care

than other AI domains because context, interpretation, and nuance add needed 
information. NLP incorporates rule-based and data-based learning systems, 
and many of the internal components of NLP systems are themselves machine 
learning algorithms with pre-defined inputs and outputs, sometimes operating 
under additional constraints. Examples of NLP applications include assessment of 
cancer disease progression and response to therapy among radiology reports (Kehl 
et al., 2019), and identification of post-operative complication from routine EHR 
documentation (Murff et al., 2011).

Speech algorithms digitize audio recordings into computable data elements 
and convert text into human speech (Chung et al., 2018). This field is closely 
connected with NLP, with the added complexity of intonation and syllable 
emphasis impacting meaning. This complicates both inbound and outbound 
speech interpretation and generation. For examples of how deep learning neural 
networks have been applied to this field, see a recent systematic review of this 
topic (Nassif, 2019).

Expert systems are a set of computer algorithms that seek to emulate the 
decision-making capacity of human experts (Feigenbaum, 1992; Jackson, 1998; 
Leondes, 2002; Shortliffe and Buchanan, 1975). These systems rely largely on a 
complex set of Boolean and deterministic rules. An expert system is divided into 
a knowledge base, which encodes the domain logic, and an inference engine, 
which applies the knowledge base to data presented to the system to provide 
recommendations or deduce new facts. Examples of this are some of the clinical 
decision support tools (Hoffman et al., 2016) being developed within the Clinical 
Pharmacogenetics Implementation Consortium, which is promoting the use of 
knowledge bases such as PharmGKB to provide personalized recommendations 
for medication use in patients based on genetic data results (CPIC, 2019; 
PharmGKB, 2019).

Automated planning and scheduling systems produce optimized strategies 
for action sequences (such as clinic scheduling), which are typically executed 
by intelligent agents in a virtual environment or physical robots designed to 
automate a task (Ghallab et al., 2004). These systems are defined by complex 
parameter spaces that require high dimensional calculations.

Computer vision focuses on how algorithms interpret, synthesize, and generate 
inference from digital images or videos. It seeks to automate or provide human 
cognitive support for tasks anchored in the human visual system (Sonka et al., 
2008). This field leverages multiple disciplines, including geometry, physics, 
statistics, and learning theory (Forsyth and Ponce, 2003). One example is 
deploying a computer vision tool in the intensive care unit to monitor patient 
mobility (Yeung et al., 2019), because patient mobility is key for patient recovery 
from severe illness and can drive downstream interventions.
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AI and Human Intelligence

Combining human intelligence and AI into augmented intelligence focuses 
on a supportive or assistive role for the algorithms, emphasizing that these 
technologies are designed to enhance human processing, cognition, and work, 
rather than replace it. William Ross Ashby originally popularized the term 
“amplifying intelligence,” which transformed into “augmented intelligence” 
(Ashby, 1964). These terms are gaining popularity because “artificial intelligence” 
has been burdened with meaning by marketing hype, popular culture, and science 
fiction—possibly impeding a reasoned and balanced discourse.

AI SYSTEMS RELIANCE ON DATA

Data are critical for delivering evidence-based health care and developing 
any AI algorithm. Without data, the underlying characteristics of the process 
and outcomes are unknown. This has been a gap in health care for many years, 
but key trends (such as commodity wearable technologies) in this domain in 
the past decade have transformed health care into a heterogeneous data-rich 
environment (Schulte and Fry, 2019). It is now common in health and health care 
for massive amounts of data to be generated about an individual from a variety 
of sources, such as claims data, genetic information, radiology images, intensive 
care unit surveillance, EHR care documentation, and medical device sensing and 
surveillance. The reasons for these trends include the scaling of computational 
capacity through decreases in cost of technology; widespread adoption of EHRs 
promoted by the Health Information Technology for Economic and Clinical 
Health (HITECH) Act; precipitous decreases in cost of genetic sample processing 
(Wetterstrand, 2019); and increasing integration of medical- and consumer-grade 
sensors. U.S. consumers used approximately 3 petabytes of Internet data every 
minute of the day in 2018, generating possible health-connected data with each 
use (DOMO, 2019). There are more than 300,000 health applications in app 
stores, with more than 200 being added each day and an overall doubling of these 
applications since 2015 (Aitken et al., 2017).

Data Aggregation

The accumulation of medical and consumer data has resulted in patients, 
caregivers, and health care professionals being responsible for aggregating, 
synthesizing, and interpreting data far beyond human cognitive and decision-
making capacities. Figure 1-4 predicts the exponential data accumulation and 
the limits of human cognition for health care decision making (IOM, 2008). 
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The growth in data generation and need for data synthesis exceeding human 
capacity has surpassed prior estimates. This trend most likely underestimates the 
magnitude of the current data milieu.

AI algorithms require large volumes of training data to achieve performance 
levels sufficient for “success” (Shrott, 2017; Sun et al., 2017), and there are 
multiple frameworks and standards in place to promote data aggregation for AI 
use. These include standardized data representations that both manage data at 
rest1 and data in motion.2 For data at rest, mature common data models (CDMs),3 
such as Observational Medical Outcomes Partnership (OMOP), Informatics 
for Integrating Biology & the Bedside (i2b2), the Patient-Centered Clinical 
Research Network (PCORNet), and Sentinel, are increasingly providing a 
backbone to format, clean, harmonize, and standardize data that can then be used 
for the training of AI algorithms (Rosenbloom et al., 2017). Some of these CDMs 
(e.g., OMOP) are also international in focus, which may support compatibility and 
portability of some AI algorithms across countries. Some health care systems have 
invested in the infrastructure for developing and maintaining at least one CDM 

1 Data at rest: Data stored in a persistent structure, such as a database or in a file system, and not in 
active use.
2 Data in motion: Data that are being transported from one computer system to another or between 
applications in the same computer.
3 A common data model is a standardized, modular, extensible collection of data schemas that is 
designed to make it easier to build, use, and analyze data. Data are transformed into the data model 
from many sources, which allows experts to make informed decisions about data representation, which 
allows users to easily reuse the data.

FIGURE 1-4 | Growth in facts affecting provider decisions versus human cognitive capacity.
SOURCES: NRC, 2009; presentation by William Stead at IOM meeting on October 8, 2007, titled “Growth in 

Facts Affecting Provider Decisions Versus Human Cognitive Capacity.”
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through funded initiatives (OHDSI, 2019; Ohno-Machado et al., 2014). Many 
others have adopted one of these CDMs as a cornerstone of their clinical data 
warehouse infrastructure to help support operations, quality improvement, and 
research. This improves the quality and volume of data that are computable and 
usable for AI in the United States, and promotes transparency and reproducibility 
(Hripcsak et al., 2015). It is also important for semantic meaning to be mapped 
to a structured representation, such as Logical Observation Identifiers Names and 
Codes and International Classification of Diseases, 10th Revision, Clinical Modification 
(ICD-10-CM), as these CDMs leverage these standardized representations.

For data in motion, in order to manage the critical interdigitation with 
consumers, EHRs, and population health management tools, HL7 FHIR is 
emerging as an open standard for helping data and AI algorithm outputs flow 
between applications and to the end user, with many of the large EHR vendors 
providing support for this standard (Khalilia et al., 2015). Another technology 
being explored extensively in health care is the use of blockchain to store, 
transport, and secure patient records (Agbo et al., 2019). Made popular by the 
bitcoin implementation of this technology, blockchain has a number of benefits, 
including (1) being immutable and traceable, which allows patients to send 
records without fear of tampering; (2) securing all records by cryptography; 
(3) allowing new medical records to be added within the encryption process; and 
(4) making it possible for patients to get stronger controls over access.

However, there are still many instances where the standardization, interoperability, 
and scale of data aggregation and transfers are not achieved in practice. Health 
information exchanges (HIEs), with appropriate permissions, are one method by 
which data may be aggregated and used for AI algorithm training and validation. 
Public health agencies and EHRs extensively support data exchange protocols 
that provide the technical capacity for electronic data sharing. However, because 
of a variety of barriers, health care professionals and patients are frequently unable 
to electronically request patient records from an outside facility after care is 
delivered (Lye et al., 2018; Ross, 2018). Most of today’s health data silos and assets 
reside in individual organizations, and current incentives leave little motivation 
for much needed collaboration and sharing. A recent review of the legal barriers 
to the operation and use of HIEs found that legislation in the past 10 years has 
lowered barriers to use, and points to economic incentives as the most significant 
current challenge (Mello et al., 2018).

Data access across health care systems, particularly data on staffing, costs and 
charges, and reimbursements, is critical for private health insurers and the U.S. 
health care delivery market. But, given the sensitive nature of this information, it 
is not shared easily or at all. Many institutions, particularly the larger integrated 
health care delivery networks, are developing internal AI and analytics to help 
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support business decisions; however, in order to effectively influence U.S. health 
care expenditures, AI algorithms need access to larger and more population-
representative data, which is possible through improved data sharing, transparency, 
and standardization (Green, 2019; Schulte, 2017). The U.S. government has been 
driving this movement toward access through ongoing efforts to prevent data 
blocking, and through implementation of a key provision in the 21st Century 
Cures Act that aims to promote price transparency (ONC, 2019). While further 
transparency may provide AI with additional opportunities, the U.S. health care 
system still has a long way to go in addressing the myriad issues preventing 
widespread data sharing and standardization. This disadvantages U.S. research and 
innovation when compared to that of other countries.

A key challenge for data integration is the lack of definitive laws and regulations 
for the secondary use of routinely collected patient health care data. Many of 
the laws and regulations around data ownership and sharing are country-specific 
and based on evolving cultural expectations and norms. In 2018, a number of 
countries promoted personal information protection guidance, moving from laws 
to specifications. The European Union has rigorous personal privacy prioritizing 
regulatory infrastructure, detailed in the General Data Protection Regulation that 
went into effect on May 25, 2019 (European Commission, 2018). In the People’s 
Republic of China (Shi et al., 2019), a non-binding but comprehensive set of 
guidelines was released in the Personal Information Security Specification. Great 
Britain’s National Health System allows national-level data aggregation for care 
delivery and research. However, even in more monolithic data environments, 
reuse of these data for AI is justifiably scrutinized. For instance, in 2018, the 
British House of Lords report on AI criticized the sharing of identifiable patient 
data with a profit-motivated Silicon Valley company (House of Lords Select 
Committee on Artificial Intelligence, 2018, Chapter 2).

Variation in laws and regulations is in part a result of differing and evolving 
perceptions of appropriate approaches or frameworks for health data ownership, 
stewardship, and control. There is also a lack of agreement on who should be able 
to profit from data-sharing activities. In the United States today, health care data 
that are fully de-identified may be reused for other purposes without explicit 
consent. However, there is disagreement over what constitutes sufficiently de-
identified data, as exemplified by a 2019 lawsuit against a Google–University of 
Chicago partnership to develop AI tools to predict medical diseases (Wakabayashi, 
2019). Patients may not realize that their data could be monetized via AI tools 
for the financial benefit of various organizations, including the organization 
that collected the data and the AI developers. If these issues are not sufficiently 
addressed, we run the risk of an ethical conundrum, where patient-provided data 
assets are used for monetary gain, without explicit consent or compensation. 
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This could be similar to Henrietta Lacks’s biological tissue story where no consent 
was obtained to culture her cells (as was the practice in 1951), nor was she or the 
Lacks family compensated for their monetization (Skloot, 2011). There is a need 
to address and clarify current regulations, legislation, and patient expectations 
when patient data are used for building profit-motivated products or for research 
(refer to Chapter 7).

The lack of national unique patient identifiers in the United States could greatly 
reduce the error rates of de-duplication during data aggregation. However, there 
are several probabilistic patient linkage tools that are currently attempting to fill 
this gap (Kho et al., 2015; Ong et al., 2014, 2017). While there is evidence that AI 
algorithms can overcome noise from erroneous linkage and duplication of patient 
records through use of large volumes of data, the extent to which these problems 
may impact algorithm accuracy and bias remains an open question.

Cloud computing that places physical computational resources in widespread 
locations, sometimes across international boundaries, is another particularly 
challenging issue. Cloud computing can result in disastrous cybersecurity breaches 
as data managers attempt to maintain compliance with many local and national 
laws, regulations, and legal frameworks (Kommerskollegium, 2012).

Finally, to make AI truly revolutionary, it is critical to consider the power of 
linking clinical and claims data with data beyond the narrow, traditional care 
setting by capturing the social determinants of health as well as other patient-
generated data. This could include utilizing social media datasets to inform the 
medical team of the social determinants that operate in each community. It 
could also include developing publicly available datasets of health-related factors 
such as neighborhood walkability, food deserts, air quality, aquatic environments, 
environmental monitoring, and new areas not yet explored.

Data Bias

In addition to the issues associated with data aggregation, selecting an 
appropriate AI training data source is critical because training data influences 
the output observations, interpretations, and recommendations. If the training 
data are systematically biased due to, for example, under-representation of 
individuals of a particular gender, race, age, or sexual orientation, those biases will 
be modeled, propagated, and scaled in the resulting algorithm. The same is true 
for human biases (intentional and not) operating in the environment, workflow, 
and outcomes from which the data were collected. Similarly, social science 
research subject samples are disproportionately U.S. university undergraduates 
who are Western, educated, industrialized, rich, and democratic (WEIRD), and 
this data bias is carried through the behavioral sciences used as the basis for 
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developing algorithms that explain or predict human behaviors (Downey, 2010; 
Sullivan, 2010).

Bias can also be present in genetic data, where the majority of sequenced 
DNA comes from people of European descent (Bustamante et al., 2011; 
Popejoy and Fullerton, 2016; Stanford Engineering, 2019). Training AI from data 
resources with these biases runs the risk of inaccurately generalizing it to non-
representative populations. An apt and provocative term used to describe this 
training is “weapons of math destruction” (O’Neil, 2017). In her book of the 
same title, Cathy O’Neil outlines the destruction that biased AI has caused in 
criminal justice sentencing, human resources and hiring, education, and other 
systems. If issues of potential biases in training data are not addressed, they further 
propagate and scale historical inequities and discrimination.

PROMOTING TRUST, EQUIT Y, AND INCLUSION IN 
HEALTH CARE AI

Trust, equity, and inclusion need to be prioritized in the health care AI 
development and deployment processes (Vayena et al., 2018). Throughout this 
publication, various chapters address topics related to the ethical, equitable, 
and transparent deployment of AI. In addition, a growing number of codes of 
ethics, frameworks, and guidelines describe many of the relevant ethical issues 
(see Table 1-2 for a representative, although not comprehensive, list).

Judy Estrin proposes implementing AI through the lens of human rights values 
and outlines the anticipated friction, offering thought-provoking questions 
through which to navigate dilemmas (see Figure 1-5).

Building on the above, we briefly describe several key considerations to ensure 
the ethical, equitable, and inclusive development and deployment of health care AI.

Diversity in AI Teams

To promote the development of impactful and equitable AI tools, it is 
important to ensure diversity—of gender, culture, race, age, ability, ethnicity, 
sexual orientation, socioeconomic status, privilege, etc.—among AI developers. 
An April 2019 AI Institute Report documents the lack of diversity in the field, 
describing this as “a moment of reckoning.” The report further notes that the 
“diversity disaster” has led to “flawed systems that exacerbate . . . gender and racial 
biases” (West et al., 2019). Consider the fact that the “Apple HealthKit, which 
enabled specialized tracking, such as selenium and copper intake, . . . neglected 
to include a women’s menstrual cycle tracker until iOS 9” (Reiley, 2016). The 
development team reportedly did not include any women.
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TABLE 1-2 | Relevant Ethical Codes, Frameworks, and Guidelines

Guiding Codes and 
Frameworks Reference

ACM Code of Ethics 
and Professional 
Conduct

Gotterbarn, D. W., B. Brinkman, C. Flick, M. S. Kirkpatrick, K. Miller, 
K. Vazansky, and M. J. Wolf. 2018. ACM code of ethics and professional 
conduct. https://www.acm.org/binaries/content/assets/about/acm-
code-of-ethics-and-professional-conduct.pdf.

Artificial Intelligence at 
Google: Our Principles

Google. 2018. Artificial intelligence at Google: Our principles. 
Google AI. https://ai.google/principles.

Ethical OS: Risk 
Mitigation Checklist

Institute for the Future and Omidyar Network. 2018. Ethical OS: 
Risk Mitigation Checklist. https://ethicalos.org/wp-content/
uploads/2018/08/EthicalOS_Check-List_080618.pdf.

DeepMind Ethics & 
Society Team

DeepMind. 2020. DeepMind Ethics & Society Team.  
https://deepmind.com/about/ethics-and-society.

Partnership on AI 
Tenets

Partnership on AI. 2018. Partnership on AI tenets. https://www.
partnershiponai.org/tenets.

AI Now Report 2018 Whittaker, M., K. Crawford, R. Dobbe, G. Fried, E. Kaziunas, 
V. Mathur, S. M. West, R. Richardson, J. Schultz, and O. Schwartz. 
2018. AI Now Report 2018. AI Now Institute at New York University. 
https://stanford.app.box.com/s/xmb2cj3e7gsz5vmus0viadt9p3kreekk.

The Trouble with 
Algorithmic Decisions

Zarsky, T. 2016. The trouble with algorithmic decisions: An analytic 
road map to examine efficiency and fairness in automated and opaque 
decision making. Science, Technology, & Human Values 41(1):18–132.

Executive Office of the 
President

Munoz, C., M. Smith, and D. J. Patil. 2016. Big data: A report on 
algorithmic systems, opportunity, and civil rights. Executive Office of 
the President. https://obamawhitehouse.archives.gov/sites/default/
files/microsites/ostp/2016_0504_data_discrimination.pdf.

Addressing Ethical 
Challenges in Machine 
Learning

Vayena, E., A. Blasimme, and I. G. Cohen. 2018. Machine learning 
in medicine: Addressing ethical challenges. PLoS Medicine 
15(11):e1002689. Figure 1.3.

Do No Harm: 
A Roadmap for 
Responsible Machine 
Learning in Health Care

Wiens, J., S. Saria, M. Sendak, M. Ghassemi, V. X. Liu, F. Doshi-Velez, K. 
Jung, K. Heller, D. Kale, M. Saeed, P. N. Ossorio, S. Thadaney-Israni, and 
A. Goldenberg. 2019. Do no harm: A roadmap for responsible machine 
learning for health care. Nature Medicine 25(9):1337–1340.

In addition, it is imperative that AI development and validation teams include 
end-user representatives who are likely to be most familiar with the issues 
associated with frontline implementation and who are knowledgeable about 
potential biases that may be incorporated into the data.

When developing, validating, and implementing AI tools that aim to promote 
behavior change to address chronic conditions such as obesity, heart disease, and 
diabetes, it is critical to engage behavioral scientists to ensure the tools account for 
behavioral theory and principles to promote change (see Chapter 6 for additional 
information on AI implementation). AI products that rely too heavily on reminders 

https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-and-professional-conduct.pdf
https://www.acm.org/binaries/content/assets/about/acm-code-of-ethics-and-professional-conduct.pdf
https://ai.google/principles
https://ethicalos.org/wp-content/uploads/2018/08/EthicalOS_Check-List_080618.pdf
https://ethicalos.org/wp-content/uploads/2018/08/EthicalOS_Check-List_080618.pdf
https://www.partnershiponai.org/tenets
https://www.partnershiponai.org/tenets
https://stanford.app.box.com/s/xmb2cj3e7gsz5vmus0viadt9p3kreekk
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discriminati
https://obamawhitehouse.archives.gov/sites/default/files/microsites/ostp/2016_0504_data_discriminati
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(e.g., “Remember to exercise 30 minutes today!”) and positive reinforcement 
through social approval (e.g., “Good job!” or “You did it!”) to effect change 
are unlikely to be successful. Decades of research show that behavioral change 
requires knowledge of the impact of health behaviors as well as a willingness to 
forgo short-term, concrete reinforcements (e.g., calorie-dense foods) in order to 
achieve longer-term, more abstract goals (e.g., “healthy weight”). This rich area 
of research stretches from early conceptual paradigms (Abraham and Sheeran, 
2007; Prochaska and Velicer, 1997; Rosenstock, 1974) to more recent literature 
that have applied behavioral principles in developing digital tools to prevent and 
manage chronic illnesses in the short and long term (Sepah et al., 2017). The 
recent melding of behavioral science with digital tools is especially exciting, 
resulting in companies such as Omada Health, Vida Health, and Livingo, who are 
deploying digital tools to enhance physical and mental health.

AI-powered platforms make it easier to fractionalize and link users and 
providers, creating a new “uberization”4 in health care and a gig economy (Parikh, 
2017) in which on-demand workers and contractors take on the risk of erratic 
employment and the financial risk of health insurance costs. This includes Uber 
and Lyft drivers, Task Rabbit temporary workers, nurses, physician assistants, and 
even physicians. Health care and education experienced the fastest growth of gig 
workers over the past decade, and the continuing trend forces questions related 
to a moral economy that explores the future of work and workers, guest workers, 

4 According to the online Cambridge Dictionary, uberization is the act or process of changing the 
market for a service by introducing a different way of buying or using it, especially using mobile 
technology.

FIGURE 1-5 | Framework for implementing artificial intelligence through the lens of 
human rights values.
SOURCE: Reprinted with permission from Judy Estrin. Based on a slide Estrin shared at The Future of Human-Centered 

AI: Governance Innovation and Protection of Human Rights Conference, Stanford University, April 16, 2019.
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and more5 (British Medical Association, 2018). Many of these on-demand workers 
also have personal health issues that impact their lives (Bajwa et al., 2018). Thus, 
it is judicious to involve political and social scientists to examine and plan for the 
societal impacts of AI in health care.

Problem Identif ication and Equitable Implementation

Health care AI tools have the capability to impact trust in the health care system 
on a national scale, especially if these tools lead to worse outcomes for some 
patients or result in increasing inequities. Ensuring that these tools address, or at 
least do not exacerbate, existing inequities will require thoughtful prioritization 
of a national agenda that is not driven purely by profit, but instead by an 
understanding of the important drivers of health care costs, quality, and access.

As a starting point, system leaders must identify key areas in which there 
are known needs where AI tools can be helpful, where they can help address 
existing inequities, and where implementation will result in improved outcomes 
for all patients. These areas must also have an organizational structure in place 
that addresses other ethical issues, such as patient–provider relationships, patient 
privacy, transparency, notification, and consent, as well as technical development, 
validation, implementation, and maintenance of AI tools within an ever evolving 
learning health care system.

The implementation of health care AI tools requires that information 
technologists, data scientists, ethicists and lawyers, clinicians, patients, and clinical 
teams and organizations collaborate and prioritize governance structures and 
processes. These teams will need a macro understanding of the data flows, 
transformations, incentives, levers, and frameworks for algorithm development 
and validation, as well as knowledge of ongoing changes required post-
implementation (see Chapter 5).

When developing and implementing those tools, it may be tempting to ignore 
or delay the considerations of the needed legal and ethical organizational structure 
to govern privacy, transparency, and consent. However, there are substantial risks 
in disregarding these considerations, as witnessed in data uses and breaches, 
inappropriate results derived from training data, and algorithms that reproduce and 
scale prejudice via the underlying historically biased data (O’Neil, 2017). There 
must also be an understanding of the ethical, legal, and regulatory structures that are 
relevant to the approval, use, and deployment of AI tools, without which there will 
be liability exposure, unintended consequences, and limitations (see Chapter 7).

5 A 2018 survey showed that 7.7 percent of UK medical workers who are EU citizens would leave 
the United Kingdom for other regions if the United Kingdom withdrew from the European Union, 
as it did in 2019. 
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There are substantial infrastructure costs for internally developed AI health 
care solutions, and these will likely deter smaller health care delivery systems 
from being early adopters. Deploying AI tools requires careful evaluation 
of performance and maintenance. If health care AI tools are effective for cost 
reduction, patient satisfaction, and patient outcomes, and are implemented as a 
competitive edge, it could leave resource-constrained systems that do not deploy 
these tools at a disadvantage. Thus, clear guidance is needed on best practices 
for assessing and interpreting the opportunities and costs of implementing AI 
tools. Best practices should be driven by an implementation science research 
agenda and should engage stakeholders to lower the cost and complexity of AI 
technologies. This is particularly important for smaller health care systems, many 
of which are in rural and resource-constrained environments.

Post-implementation, the health care systems and stakeholders will need to 
carefully monitor the impact of AI tools to ensure that they meet intended goals 
and do not exacerbate inequities.

Impact of AI on the Patient–Provider Relationship

The well-intentioned introduction of EHRs and the HITECH Act incentives 
contributed to converting physicians into data-entry clerks, worsening physician 
burnout, and reducing patient satisfaction (Verghese, 2018). To ensure health care 
AI tools do not worsen that burden, a fundamental issue is the potential impact 
of AI on the patient–provider relationship. This could include further degradation 
of empathic interactions as well as a mismatch between existent and needed skills 
in the workforce. Throughout this publication, we emphasize the power of AI to 
augment rather than replace human intelligence, because

the desirable attributes of humans who choose the path of caring for others 
include, in addition to scientific knowledge, the capacity to love, to have 
empathy, to care and express caring, to be generous, to be brave in advocating for 
others, to do no harm, and to work for the greater good and advocate for justice. 
How might AI help clinicians nurture and protect these qualities? This type of 
challenge is rarely discussed or considered at conferences on AI and medicine, 
perhaps because it is viewed as messy and hard to define. But, if the goal is for AI 
to emulate the best qualities of human intelligence, it is precisely the territory 
that cannot be avoided. (Israni and Verghese, 2019)

As discussed in Chapter 4, the U.S. health care system can draw important 
lessons from the aviation industry, the history of which includes many examples 
of automation addressing small challenges, but also occasionally creating 
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extraordinary disasters. The 2009 plane crash of an Air France flight from Rio to 
Paris showed the potential

unintended consequence of designing airplanes that anyone can fly: anyone can take 
you up on the offer. Beyond the degradation of basic skills of people who may once 
have been competent pilots, the fourth-generation jets have enabled people who 
probably never had the skills to begin with and should not have been in the cockpit. 
As a result, the mental makeup of airline pilots has changed. (Langewiesche, 2014)

More recently, disasters with Boeing’s 737 Max caused by software issues offer 
another caution: Competent pilots’ complaints about next-generation planes 
were not given sufficient review (Sharpe and Robison, 2019).

Finally, just because technology makes it possible to deploy a particular solution, 
it may still not be appropriate to do so. Recently, a doctor in California used a 
robot with a video-link screen in order to tell a patient that he was going to die. 
After a social media and public relations disaster, the hospital apologized, stating, 
“We don’t support or encourage the use of technology to replace the personal 
interactions between our patients and their care teams—we understand how 
important this is for all concerned, and regret that we fell short of the family’s 
expectations” (BBC News, 2019). Technochauvinism in AI will only further 
complicate an already complex and overburdened health care system.

In summary, health care is a complex field that incorporates genetics, physiology, 
pharmacology, biology, and other related sciences with the social, human, and 
cultural experience of managing health. Health care is both a science and an art, 
and challenges the notion that simple and elegant formulas will be able to explain 
significant portions of health care delivery and outcomes (Toon, 2012).

PUBLICATION ORGANIZATION

This publication is structured around several distinct topic areas, each covered 
in a separate chapter and independently authored by the listed expert team. 
Figure 1-6 shows the relationship of the chapters.

Each chapter is intended to stand alone and represents the views of its authors. 
In order to allow readers to read each chapter independently there is some 
redundancy in the material, with relevant references to other chapters where 
appropriate. Each chapter initially summarizes the key content of the chapter 
and concludes with a set of key considerations for improving the development, 
adoption, and use of AI in health care.

Chapter 2 examines the history of AI, using examples from other industries, 
and summarizes the growth, maturity, and adoption of AI in health care. The 



28  |  Artificial Intelligence in Health Care

chapter also describes the central importance of AI to the realization of the 
learning health care system.

Chapter 3 describes the potential utility of AI for improving health care 
delivery and discusses the near-term opportunities and potential gains from 
the use of AI in health care settings. The chapter also explores the promise of 
AI by key stakeholder groups, including patients and families, the clinical care 
team, population and public health program managers, health care business and 
administrative professionals, and research and development professionals.

Chapter 4 considers some of the unintended consequences of AI in health 
care work processes, culture, equity, patient–provider relationships, and workforce 
composition and skills, and offers approaches for mitigating the risks.

Chapter 5 covers the technical processes and best practices for developing and 
validating AI models, including choices related to data, variables, model complexity, 
learning approach, set up, and the selection of metrics for model performance.

Chapter 6 considers the key issues and best practices for deploying AI models 
in clinical settings, including the software development process, the integration 
of models in health care settings, the application of implementation science, and 
approaches for model maintenance and surveillance over time.

Chapter 7 summarizes key laws applicable to AI that may be applied in health care, 
describes the regulatory requirements imposed on AI systems designed for health care 
applications, and discusses legal and policy issues related to privacy and patient data.

The final chapter builds on and summarizes key themes across the publication and 
describes critical next steps for moving the field forward equitably and responsibly.

FIGURE 1-6 | Chapter relationship.
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James Fackler, Johns Hopkins Medicine, and Edmund Jackson, 
Hospital Corporation of America

INTRODUCTION

This chapter first acknowledges the roots of artificial intelligence (AI). We then 
briefly touch on areas outside of medicine where AI has had an impact and 
highlight where lessons from these other industries might cross into health care.

For decades, the attempt to capture knowledge in the form of a book has 
been challenging, as indicated by the adage “any text is out of date by the time 
the book is published.” However, in 2019, with what has been determined by 
some analyses as exponential growth in the field of computer science and AI in 
particular, change is happening at a pace that renders sentences in this chapter out 
of date almost immediately. To stay current, we can no longer rely on monthly 
updates from a stored PubMed search. Rather, daily news feeds from sources such 
as the Association for the Advancement of Artificial Intelligence or arXiv1 are 
necessary. As such, this chapter contains references to both historical publications 
as well as websites and web-based articles.

It is surpassingly difficult to define AI, principally because it has always been 
loosely spoken of as a set of human-like capabilities that computers seem about 
ready to replicate. Yesterday’s AI is today’s commodity computation. Within that 
caveat, we aligned this chapter with the definition of AI in Chapter 1. A formal 
definition of AI starts with the Oxford English Dictionary: “The capacity of 
computers or other machines to exhibit or simulate intelligent behavior; the 
field of study concerned with this,” or Merriam-Webster online: “1: a branch 

1 See https://arxiv.org/list/cs.LG/recent.

https://arxiv.org/list/cs.LG/recent
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of computer science dealing with the simulation of intelligent behavior in 
computers, 2: the capability of a machine to imitate intelligent human behavior.”

HISTORICAL PERSPECTIVE

If the term “artificial intelligence” has a birthdate, it is August 31, 1955, when 
John McCarthy, Marvin L. Minsky, Nathaniel Rochester, and Claude E. Shannon 
submitted “A Proposal for the Dartmouth Summer Research Project on Artificial 
Intelligence.” The second sentence of the proposal reads, “The study is to proceed 
on the basis of the conjecture that every aspect of learning or any other feature 
of intelligence can in principle be so precisely described that a machine can 
be made to simulate it” (McCarthy et al., 2006). Naturally, the proposal and 
the resulting conference—the 1956 Dartmouth Summer Research Project on 
Artificial Intelligence—were the culmination of decades of thought by many 
others (Buchanan, 2005; Kline, 2011; Turing, 1950; Weiner, 1948). Although the 
conference produced neither formal collaborations nor tangible outputs, it clearly 
galvanized the field (Moor, 2006).

Thought leaders in this era saw the future clearly, although optimism was 
substantially premature. In 1960, J. C. R. Licklider wrote

The hope is that, in not too many years, human brains and computing machines 
will be coupled together very tightly, and that the resulting partnership will think 
as no human brain has ever thought and process data in a way not approached by 
the information-handling machines we know today. (Licklider, 1960)

Almost 60 years later, we are closer but not there yet.
Two major competing schools of thought developed in approaching AI: 

(1) symbolic representation and formal logic expressed as expert systems and 
advanced primarily with Lisp, a family of computer programming languages (and 
Prolog in Europe) by John McCarthy, and (2) conceptualization and mathematical 
frameworks for mirroring neurons in the brain, formalized as “perceptrons” by 
Frank Rosenblatt (1958; see also McCarthy, 1958). The latter was initially known 
as the connectionist school, but we now know the technique as artificial neural 
networks. The McCarthy school of formal logic was founded by the technical 
paper “Programs with Common Sense,” in which McCarthy defines and creates 
the first full AI program: Advice Taker (McCarthy, 1959). The major thrust of the 
paper is that “in order for a program to be capable of learning something it must 
first be capable of being told it,” and hence the formalization of declarative logic 
programming. By the 1970s, however, excitement gave way to disappointment 
because early successes that worked in well-structured narrow problems failed to 
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either generalize to broader problem solving or deliver operationally useful systems. 
The disillusionment, summarized in the Automatic Language Processing Advisory 
Committee report (NRC, 1966) and the Lighthill report (Lighthill, 1973), resulted 
in an “AI Winter” with shuttered projects, evaporation of research funding, and 
general skepticism about the potential for AI systems (McCarthy, 1974).

Yet, in health care, work continued. Iconic expert systems such as MYCIN 
(Shortliffe, 1974) and others such as Iliad, Quick Medical Reference, and Internist-1 
were developed to assist with clinical diagnosis. AI flowered commercially in the 
1980s, becoming a multibillion-dollar industry advising military and commercial 
interests (Miller et al., 1982; Sumner, 1993). However, all ultimately failed to 
reach the hype and lofty promises resulting in a second AI Winter from the late 
1980s until the late 2000s.2

During the AI Winter, the various schools of computer science, probability, 
mathematics, and AI came together to overcome the initial failures of AI. In 
particular, techniques from probability and signal processing, such as hidden 
Markov models, Bayesian networks, stochastic search, and optimization, were 
incorporated into AI thinking, resulting in a field known as machine learning. 
The field of machine learning applies the scientific method to representing, 
understanding, and utilizing datasets, and, as a result, practitioners are known 
as data scientists. Popular machine learning techniques include random forests, 
boosting, support vector machines, and artificial neural networks. See Hastie et al. 
(2001) or Murphy (2013) for thorough reviews; these methods are also discussed 
in more detail in Chapter 5.

Around 2010, AI began its resurgence to prominence due to the success of 
machine learning and data science techniques as well as significant increases in 
computational storage and power. These advances fueled the growth of technology 
titans such as Google and Amazon.

Most recently, Rosenblatt’s ideas laid the groundwork for artificial neural 
networks, which have come to dominate the field of machine learning thanks 
to the successes of Geoffrey Hinton’s group, and later others, in solving 
computational problems in training expressive neural networks and the ubiquity 
of data necessary for robust training (Halevy et al., 2009; Krizhevsky et al., 2012). 
The resulting systems are called deep learning systems and showed significant 
performance improvements over prior generations of algorithms for some use 
cases. It is noteworthy that Hinton was awarded the 2018 Turing Prize alongside 
Yoshua Bengio and Yann LeCun for their work on deep learning (Metz, 2019).

Modern AI has evolved from an interest in machines that think to ones that 
sense, think, and act. It is important at this early stage to distinguish narrow from 

2 See Newquist (1994) for a thorough review of the birth, development, and decline of early AI.
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general AI. The popular conception of AI is of a computer, hyper capable in all 
domains, such as was seen even decades ago in science fiction with HAL 9000 
in 2001: A Space Odyssey or aboard the USS Enterprise in the Star Trek franchise. 
These are examples of general AIs and, for now, are wholly fictional. There is an 
active but niche general AI research community represented by Deepmind, Cyc, 
and OpenAI, among others. Narrow AI, in contrast, is an AI specialized at a single 
task, such as playing chess, driving a car, or operating a surgical robot. Certain 
narrow AIs do exist and are discussed in further detail below.

As discussed above and more in Chapter 4, the word overhyped, however, 
should be mentioned again. The Gartner Hype Cycle is a good place to start 
understanding the current state of AI in the broad stages of innovation, inflated 
expectations, disillusionment, enlightenment, and finally productivity (Gartner, 
Inc., 2018). While we grow out of the AI Winter, it is crucial that we maintain 
this perspective. Research publications and marketing claims should not overstate 
utility. Cautious optimism is crucial (Frohlich et al., 2018).

AI IN NON–HEALTH CARE INDUSTRIES

There are many industries outside of health care that are further along in their 
adoption of AI into their workflows. The following section highlights a partial 
list of those industries and discusses aspects of AI use in these industries to be 
emulated and avoided.

Users

It is critical to consider AI primarily in terms of its relationship with users, 
particularly in the health care sector. Considerable concern exists about AIs 
replacing humans in the workforce once they are able to perform functions that 
previously required a human (Kolko, 2018; Zhang et al., 2019). However, when 
examined critically, it is usually the case that computer scientists design AI with 
human users in mind, and as such, AI usually extends the capacity, capability, 
and performance of humans, rather than replacing them (Topol, 2019). The self-
driving car, our first example below, demonstrates how an AI and human might 
work together to achieve a goal, which enhances the human experience (Hutson, 
2017). In other examples such as legal document review, the AI working with 
the human reviews more documents at a higher level of precision (Xu and Wang, 
2019). This concept of a human and AI team is known in the AI literature as a 
“centaur” (Case, 2018) and in the anthropology literature as a “cyborg” (Haraway, 
2000). To date, most of the focus on the use of AI has been to support physicians. 
However, patients, caregivers, and allied health clinicians of all types will also be 



Overview of Current Artificial Intelligence  |  41

AI users. In the next sections we examine scenarios in which AI may influence 
health care. Again, it is important to note that, regardless of how extensive the 
deployment of the AI systems described below, care must be exercised in their 
translation into health care.

Automotive

Of all of the industries making headlines with the use of AI, the self-driving car 
has most significantly captured the public’s imagination (Mervis, 2017). In concept, 
a self-driving car is a motor vehicle that can navigate and drive its occupants without 
their interaction. Whether this should be the aspirational goal (i.e., “without their 
interaction”) is a subject of debate. For this discussion, it is more important to 
note that the component technologies have been evolving publicly for some 
years. Navigation has evolved from humans reading paper maps to satellite-based 
global positioning system (GPS)-enabled navigation devices, to wireless mobile 
telecommunications networks that evolved from analog to increasingly broadband 
digital technologies (2G to 3G to 4G to 5G), and most recently, navigation systems 
that supplement mapping and simple navigation with real-time, crowd-sourced 
traffic conditions (Mostafa et al., 2018). In research contexts, ad hoc networks 
enable motor vehicles to communicate directly with each other about emergent 
situations and driving conditions (Zongjian et al., 2016).

The achievement of successful self-driving cars has been and continues to be 
evolutionary. In terms of supporting the act of driving itself, automatic transmissions 
and anti-lock braking systems were early driver-assistance technologies. More 
recently, we have seen the development of driver-assistance AI applications that 
rely on sensing mechanisms such as radar, sonar, lidar, and cameras with signal 
processing techniques, which enable lane departure warnings, blind spot assistance, 
following distance alerts, and emergency braking (Sujit, 2015).

This recent use of cameras begins to distinguish AI techniques from the prior 
signal processing techniques. AI processes video data from the cameras at a level 
of abstraction comparable to that at which a human comprehends. That is, the 
machine extracts objects such as humans, cyclists, road signs, other vehicles, lanes, 
and other relevant factors from the video data and has been programmed to 
identify and interpret the images in a way that is understandable to a human. This 
combination of computer vision with reasoning comprises a specialized AI for 
driving.

However, for all the laudable goals, including improving driving safety, errors 
remain and sometimes those errors are fatal. This is possibly the single most 
important lesson that the health care domain can learn from the increasing use of 
AI in other industries. As reported in the press, the woman killed in spring 2018 
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as she walked her bicycle across the street was sensed by the onboard devices, 
but the software incorrectly classified her as an object for which braking was 
unnecessary. It was also reported that the “backup” driver of this autonomous 
vehicle was distracted, watching video on a cell phone (Laris, 2018).

The point of the above example is not that AI (in this case a self-driving 
car) is evil. Rather, we need to understand AI not in isolation but as part of a 
human–AI “team.” Certainly, humans without any AI assistance do far worse; on 
average in 2017, 16 pedestrians were killed each day in traffic crashes (NHTSA, 
2018). Reaching back to the 1960 quote from Licklider, it is important to note 
that the title of his article was “Man–Computer Symbiosis.” In this example, the 
driver–computer symbiosis failed. Even the conceptualization that the human 
was considered a backup was wrong. The human is not just an alternative to 
AI; the human is an integral part of the complete system. For clinicians to 
effectively manage this symbiosis, they must (1) understand their own weaknesses 
(e.g., fatigue, biases), (2) understand the limits of the sensors and analytics, and 
(3) be able to assist or assume complete manual control of the controlled process 
in time to avoid an unfortunate outcome. AI must be viewed as a team member, 
not an “add-on” (Johnson and Vera, 2019).

Other examples of AI outside of medicine are outlined below. The theme of 
symbiosis is ubiquitous.

Professional Ser vices

Although AI is often associated with physical devices and activities, it is actually 
very well suited to professional activities that rely on reasoning and language. For 
example, x.ai offers the seemingly mundane but intricate service of coordinating 
professionals’ calendars. This is offered through a chat bot, which exercises not 
only natural language interpretation and generation but also logical reasoning to 
perform the scheduling.

In another domain, LawGeex and other vendors offer an AI that performs legal 
contract review and both discovers and appropriately escalates issues found in 
contract language. In addition, the AI can propose redline edits in coordination 
with a lawyer. Such an AI streamlines the review of standard contracts, such as 
nondisclosure agreements, that consume significant, expensive time with little 
probable value. As with many AI products, the AI enhances the human’s capabilities 
and effectiveness, rather than operating as an autonomous agent.

Accounting and auditing are beginning to utilize AI for repetitive task 
automation such as accounts receivable coding and anomaly detection in audits 
(Amani and Fadlalla, 2017). Once again, the reason for this application of AI is 
speed and accuracy, when paired with a human.
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Engineers and architects have long applied technology to enhance their design, 
and AI is set to accelerate that trend (Noor, 2017). Unusual AI-generated structural 
designs are in application today. A well-known example is the partition in the 
Airbus A320, in which AI algorithms utilized biomimetics to design a material 
almost half as light and equally as strong as the previous design (Micallef, 2016).

Finance has also been an early adopter of machine learning and AI techniques. 
The field of quantitative analytics was born in response to the computerization 
of the major trading exchanges. This has not been a painless process. One of 
the early “automated” trading strategies, portfolio insurance, is widely believed 
to have either caused or exacerbated the 1987 stock market crash (Bookstaber, 
2007). The failure of Long-Term Capital Management offers another cautionary 
example (Lowenstein, 2011). This fund pursued highly leveraged arbitrage trades, 
where the pricing and leverage were algorithmically determined. Unexpected 
events caused the fund to fail spectacularly, requiring an almost $5 billion bailout 
from various financial institutions. Despite these setbacks, today all major banks 
and a tremendous number of hedge funds pursue trading strategies that rely on 
systematic machine learning or AI techniques. Most visible are the high-frequency 
trading desks, which rely on AI technologies to place, cancel, and execute orders 
at a speed as minute as one-hundredth of a microsecond, far faster than a human 
can think, react, and act (Seth, 2019).

Media

Content recommendation, most often based on an individual’s previous choices, 
is the most widely visible application of AI in media. Large distribution channels 
such as Netflix and Amazon leverage machine learning algorithms for content 
recommendation to drive sales and engagement (Yu, 2019). These systems initially 
relied on algorithms such as collaborative filters to identify customers similar to 
others in terms of what media they consumed and enjoyed. More recently, deep 
learning techniques have been found superior for this task (Plummer, 2017). 
Health care examples are limited (Chen and Altman, 2015).

An interesting development has been that early techniques relied on metadata 
(descriptive features of media) in order to generate recommendations. More recent 
techniques utilize AI to generate metadata from the media itself, to personalize 
the presentations of recommendations, and then create recommendations. For 
instance, computer vision is used now to index film to identify faces, brands, and 
locations, which are coupled with human tags to create rich metadata (Yu, 2019).

In the music industry, startups such as Hitwizard and Hyperlive generalize 
these two ideas to attempt to predict which songs will be popular (Interiano et al., 
2018). First, the AI structures the music into features such as loudness, beats per 
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minute, and key, among others. Then, it compares this structured representation 
of the song to others that have been successful in order to identify similarity, and 
hence the new song’s likelihood of also becoming a hit. The general complaint 
that all the music on the radio “sounds the same” may be based in part on the 
need to conform to the styles “approved” by the algorithms.

An emerging AI capability is generative art. Google initially released software 
called Deep Dream, which was able to create art in the style of famous artists, 
such as Vincent van Gogh (Mordvintsev et al., 2015). This technique is now used 
in many cell phone apps, such as Prisma Photo Editor,3 as “filters” to enhance 
personal photography.

Another more disturbing use of AI surfaces in the trend known as “deepfakes,” 
technology that enables face and voice swapping in both audio and video 
recordings (Chesney and Citron, 2018). The deepfake technique can be used to 
create videos of people saying and doing things that they never did, by swapping 
their faces, bodies, and other features onto videos of people who did say or do what 
is portrayed in the video. This initially emerged as fake celebrity pornography, but 
academics have demonstrated that the technique can also be used to create fake 
political videos (BBC News, 2017). The potential effect of such technology, when 
coupled with the virality of social networks, for the dissemination of false content 
is terrifying. Substantial funding is focused on battling deepfakes (Villasenor, 
2019). An ethical, societal, and legal response to this technology has yet to emerge.

Compliance and Security

Security is well suited to the application of AI, because the domain exists to 
detect the rare exception, and vigilance in this regard is a key strength of all 
computerized algorithms. One current application of AI in security is automated 
license plate reading, which relies on basic computer vision (Li et al., 2018). 
Because license plates conform to strict standards of size, color, shape, and location, 
the problem is well constrained and thus suitable for early AI.

Predictive policing has captured the public imagination, potentially due to 
popular representations in science fiction films such as Minority Report (Perry 
et al., 2013). State-of-the-art predictive policing technology identifies areas and 
times of increased risk of crime rather than identifying the victim or perpetrator 
(Kim et al., 2018). Police departments typically utilize such tools as part of larger 
strategies. However, implementations of these technologies can propagate racial, 
gender, and other kinds of profiling when based on historically biased datasets 
(Caliskan et al., 2017; Garcia, 2016) (see Chapter 1).

3 See https://prisma-ai.com.

https://prisma-ai.com
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In the commercial sector, AI is finding increasing application in compliance. AI 
technologies can read e-mails, chat logs, and AI-transcribed phone calls in order 
to identify insider trading, theft, or other abuses. Research efforts are under way 
to identify theft, diversion, and abuse from all manner of dispensing devices.

Note that many of these applications are also controversial for privacy concerns 
and surveillance capacity and scope, in addition to their potential to propagate 
racial, gender, and sexual orientation biases (see Chapter 1). Large gaps remain in 
the goal of aligning population and cultural expectations and preferences with 
the regulation and legislation of privacy, which is a subject covered in more detail 
in Chapter 7.

Space Exploration

Space exploration is another area—an unusual and interesting one, at that—
in which AI has been employed. One might provocatively claim that there is a 
planet in our solar system (probably) populated exclusively by robots, and that 
one of those robots is artificially intelligent. On Mars, NASA has sent robot 
rovers to explore the surface. In Curiosity, the most recent rover, NASA included 
a navigation and target acquisition AI called AEGIS (Autonomous Exploration 
for Gathering Increased Science System) (Chien and Wagstaff, 2017; Francis 
et al., 2017). This AI allows the rover to autonomously select rocks likely to 
yield successful observational studies. The necessity for AI derives from the 
communication latency between an Earth-based controller and the distant 
rover that can cause inefficiency or danger, such as in response to unexpected 
volcanic eruptions. The NASA Jet Propulsion Laboratory is currently designing 
an autonomous AI that will enable a self-sufficient probe to explore the methane 
subsurface oceans of Titan and Europa (Troesch et al., 2018).

AI BY INDIVIDUAL FUNCTIONS

While the concept of an “intelligent machine” has interested philosophers at 
least as far back as Descartes, the most popular conception was first proposed by 
Alan Turing (1950). Turing proposed that the question of a machine’s ability to 
think is not constructive, and instead one ought to test whether or not a machine 
can perform as well as a human in conversation. This has come to be known 
as the “Turing test,” which still serves as the prototype litmus test for many AI 
tasks. Indeed, in all AI areas—from specialized reasoning, to speech, to vision—
researchers attempt to outperform humans using AI.

Where the preceding section considers the many current applications of AI, 
in this section we consider the components, or faculties, that comprise an AI 
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system or tool. The core of AI is reasoning, whether that is achieved symbolically, 
probabilistically, or through mathematical optimization. But before an AI system 
or tool can reason, a representation of the domain of reasoning must first be 
made. For instance, to play chess, the computer must somehow hold the current 
state of the board, the rules of the game, and the desired outcome in its memory. 
Effectively structuring or representing reality is often the key to AI. A key 
observation is that these representations are often layered; stated differently, an 
effective representation comprises a hierarchy of abstractions.

Consider chess again: the base representation is the field and players, the next layer 
may be particular formations of pieces, the next evolving set plays, and so on. By 
reasoning at higher and higher levels of abstraction, AIs can achieve effectiveness 
without requiring true human intelligence. George V. Neville-Neil writes:

We have had nearly 50 years of human/computer competition in the game of 
chess but does that mean any of those computers are intelligent? No, it does 
not—for two reasons. The first is that chess is not a test of intelligence; it is the 
test of a particular skill—of playing chess. The second reason is that thinking 
chess was a test of intelligence was based on a false cultural premise that brilliant 
chess players were brilliant minds, more gifted than those around them. Yes, 
many intelligent people excel at chess, but chess, or any other single skill, does 
not denote intelligence. (Neville-Neil, 2017)

Thus, an AI system typically receives input from sensors (afferent systems) and 
operates in the environment through displays/effectors (efferent systems). These 
capture reality, represent and reason over it, and then affect reality, respectively. 
The standard representation of this is a keyboard and mouse as inputs, a central 
processing unit (CPU) and data storage units for processing, and a monitor for 
output to a human user. A robot with AI may contain sonar for inputs, a CPU, 
and motorized wheels for its outputs. More sophisticated AIs, such as a personal 
assistant, may have to interpret and synthesize data from multiple sensors such 
as a microphone, a camera, and other data inputs in order to interact with a 
user through a speaker or screen. As each of the effectors, representations, and 
AI reasoning systems improves, it becomes more seamless, or human-like, in its 
capabilities.

AI Technologies

AI in the guise of “the next impossible thing computers will do,” almost by 
definition, occupies the forefront of technology at whatever time it is considered. 
As a result, AI is often conflated with its enabling technology. For instance, in the 
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1980s there were hardware machines, called Lisp machines, specifically created 
to execute the AI algorithms of the day (Phillips, 1999). Today, technologies such 
as graphics processing units (GPUs), the Internet of Things (IoT), and cloud 
computing are closely associated with AI, while not being AI in and of themselves. 
In this section, we briefly review and clarify.

GPUs and, recently, tensor processing units (TPUs) are computer hardware 
elements specialized to perform mathematical calculations rapidly. They are 
much like the widely understood CPUs, but rather than being generalized so 
that they are able to perform any operation, GPUs and TPUs are specialized to 
perform calculations more useful to machine learning algorithms and hence AI 
systems. The operations in question are linear algebra operations such as matrix 
multiplication. The GPUs and TPUs enable AI operations.

IoT is the movement to collect sensor data from all manner of physical devices 
and make them available on the Internet. Examples abound including lightbulbs, 
doors, cameras, and cars; theoretically anything that can be manufactured might 
be included. IoT is associated with AI because the data that flow from these 
devices comprise the afferent arm of AI systems. As IoT devices proliferate, 
the range of domains to which AI can be applied expands. In the emergent 
Internet of Medical Things, patient-generated physiological measurements 
(e.g., pulse oximeters and sphygmomanometers) are added to the data collected 
from these “environmental” devices. It will be crucial that we “understand the 
limitations of these technologies to avoid inappropriate reliance on them for 
diagnostic purposes” (Deep Blue, 2019; Freedson et al., 2012) and appreciate the 
social risks potentially created by “intervention-generated inequalities” (Veinot 
et al., 2018).

Cloud computing abstracts computation by separating the computer services 
from the proximate need for a physical computer. Large technology companies 
such as Amazon, Google, Microsoft, and others have assembled vast warehouses 
filled with computers. These companies sell access to their computers and, more 
specifically, the services they perform over the Internet, such as databases, queues, 
and translation. In this new landscape, a user requiring a computer service can 
obtain that service without owning the computer. The major advantage of this 
is that it relieves the user of the need to obtain and manage costly and complex 
infrastructure. Thus, small and relatively technologically unsophisticated users, 
including individuals and companies, may benefit from advanced technology. 
Most data now are collected in clouds, which means that the complex computing 
hardware (such as GPU machines) and services (such as natural language 
processing [NLP]) needed for AI are easily obtainable. Cloud computing also 
creates challenges in multinational data storage and other international law 
complexities, some of which are briefly discussed in Chapter 7.
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Reasoning and Learning

Computers are recognized as superior machines for their rigorous logic and 
expansive calculation capabilities, but the point at which formal logic becomes 
“thinking” or “intelligence” has proven difficult to pinpoint (Turing, 1950). 
Expert systems that have been successful in military and industrial settings have 
captured the imagination of the public with the Deep Blue versus Kasparov chess 
matches. More recently, Google DeepMind’s AlphaGo defeated Lee Sedol at the 
game Go, using deep learning methods (Wikipedia, 2019a).

Adaptive Learning

A defining feature of a machine learning system is that the programmer does not 
instruct the computer to perform a specific task but, rather, instructs the computer 
how to learn a desired task from a provided dataset. Programs such as deep learning, 
reinforcement learning, gradient boosting, and many others comprise the set of 
machine learning algorithms. The programmer also provides a set of data and 
describes a task, such as images of cats and dogs and the task to distinguish the two. 
The computer then executes the machine learning algorithm upon the provided 
data, creating a new, derivative program specific to the task at hand. This is called 
training. That program, usually called the model, is then applied to a real-world 
problem. In a sense, then, we can say that the computer has created the model.

The machine learning process described above comprises two phases, training 
and application. Once learning is complete, it is assumed that the model is 
unchanging. However, an unchanging model is not strictly necessary. A machine 
learning algorithm can alternatively continue to supplement the original training 
data with data and performance encountered in application and then retrain itself 
with the augmented set. Such algorithms are called adaptive because the model 
adapts over time.

All static models in health care degrade in performance over time as characteristics 
of the environment and targets change, and this is one of the fundamental 
distinctions between industrial and health care processes (addressed in more detail 
in Chapter 6). However, adaptive learning algorithms are one of the family of 
methods that can adapt to this constantly changing environment, but they create 
special challenges for regulation, because there is no fixed artifact to certify or 
approve. To draw a health care analogy, the challenge would be like the U.S. Food 
and Drug Administration (FDA) attempting to approve a molecule that evolved 
over time. Although it is possible to certify that an adaptive algorithm performs to 
specifications at any given moment and that the algorithm by which it learns is 
sound, it is an open question as to whether the future states of an adaptive algorithm 
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can be known to perform at the same or better specification—that is, whether it 
can be declared safe. FDA has issued guidance that it will approve adapting devices, 
but significant challenges remain in this domain. For further discussion of these 
challenges in the regulatory and legislative context, see Chapter 7.

Reinforcement Learning

Understood best in the setting of video games, where the goal is to finish with 
the most points, reinforcement learning examines each step and rewards positive 
choices that the player makes based on the resulting proximity to a target end 
state. Each additional move performed affects the subsequent behavior of the 
automated player, known as the agent in reinforcement learning semantics. The 
agent may learn to avoid certain locations to prevent falls or crashes, touch tokens, 
or dodge arrows to maximize its score. Reinforcement learning with positive 
rewards and negative repercussions is how robot vacuum cleaners learn about 
walls, stairs, and even furniture that moves from time to time (Jonsson, 2019).

Computer Vision

Computer vision is a domain of AI that attempts to replicate the human visual 
apparatus (see Chapter 1). The machine should be able to segment, identify, and 
track objects in still and moving images. For example, some automobile camera 
systems continuously monitor for speed limit signs, extract that information, and 
display it on the dashboard. More advanced systems can identify other vehicles, 
pedestrians, and local geographic features. As noted above, combining similar 
computer vision systems with reasoning systems is necessary for the general 
problem of autonomous driving.

Language and Conversation

The language and conversation domain of AI can be segmented into the 
interpretation and generation of spoken and written words (see Chapter 1). 
Textual chatbots that assist humans in tasks such as purchases and queries is one 
active frontier. Today, spoken words are mainly encountered in the consumer 
realm in virtual assistants such as Alexa, Siri, Cortana, and others, such as those 
embedded in cars. These AI systems typically convert audio data into textual 
data for processing, apply NLP or natural language understanding for the task 
at hand, generate a textual response, and then convert that into audio. While full 
conversations are currently beyond the state of the art, simple intent or question-
and-answer tasks are now commercially available.
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Touch and Movement

Early applications of the robotics domain of AI appeared in industrial 
manufacturing, autopilots and autonomous vehicles, and home robots such as 
the Roomba, with additional research having gone into humanoid and canine-
like robots. Making four-legged robots walk, run, and recover from falls, in 
particular, has been vexing. Building on the adaptive learning discussion above, 
the use of simulated data to speed robot training, which augments but does not 
fully replace the engineered control mechanisms, is a recent advance in robotics 
(Hwangbo, 2019).

Smell and Taste

Electronic noses are still marginal but increasingly useful technology (Athamneh 
et al., 2008). They couple chemosensors with classification systems in order to 
detect simple and complex smells. There is not yet significant research into an 
electronic tongue, although early research similar to that concerning electronic 
noses exists. Additionally, there is early research on computer generation of taste 
or digital gustation, similar to the computer generation of speech; however, no 
applications of this technology are apparent today.

KEY STAKEHOLDERS

It is not too strong to assert that AI is the fruit of U.S. government–funded 
research, carried out initially by programs such as the Defense Advanced Research 
Projects Agency (DARPA), which funded academic pioneers at the Massachusetts 
Institute of Technology (MIT), Stanford University, and Carnegie Mellon 
University in the 1960s. However, as the utility and impact of these technologies 
has accelerated, a number of other countries have made significant investments 
in AI. Furthermore, by providing a constant and deep market for AI technologies 
through energy, space exploration, and national defense, the governments of the 
United States, China, the European Union, and other countries have enabled AI 
to take root and thrive.

United States

The United States has been coordinating strategic research and development 
(R&D) investment in AI technologies for a number of years. In reaction to 
the Soviet Union’s launch of Sputnik in 1957, the U.S. government founded 
DARPA, which poured significant funding into computing, resulting in the early 
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advancement of AI as well as the Internet. Most foundational AI technology was 
supported through DARPA funding, beginning in the 1960s.

In 2016, DARPA’s AI R&D plan established a number of strategic categories 
and aims for federal investment, which included recommendations for developing 
an implementation framework and workforce for AI R&D. The National 
Institutes of Health has also articulated strategic goals for AI within its Strategic 
Plan for Data Science, and the U.S. Department of Health and Human Services in 
conjunction with the Robert Wood Johnson Foundation commissioned a report 
on how AI will shape the future of public health, community health, and health 
care delivery (JASON, 2017; NIH, 2018).

In 2018, DARPA announced “AI Next,” a $2 billion program to support the 
further development of AI. Additionally, under the Trump administration, the 
National Science and Technology Council established the Select Committee on 
Artificial Intelligence, which is tasked with publicizing and coordinating federal 
R&D efforts related to AI (White House Office of Science and Technology 
Policy, 2018). In February 2019, President Donald Trump issued an Executive 
Order 13859, “Maintaining American Leadership in Artificial Intelligence,” which 
charged the Select Committee on Artificial Intelligence with the generation of 
a report and a plan (Trump, 2019). This plan, released in June 2019, outlines 
the national governmental strategy for AI R&D, which includes a broad scope 
of seven focus areas to guide interagency collaboration, education and training 
programs, and directed funding programs (NSTC, 2019).

China

China is a recent but energetic participant in the AI community. In 2017, 
Chinese inventors filed more AI patents than any other country (World Intellectual 
Property Organization, 2018). In addition, although the specific amount of 
government funding that China has allocated for AI research is difficult to know, 
CBInsights (2018) estimated that China represented 48 percent of global AI 
research funding in 2018, dwarfing other countries’ contributions to the field. 
The Boston Consulting Group reached similar conclusions, noting that up to 
85 percent of Chinese companies have either adopted AI processes or are running 
pilot initiatives to do so. The report could say the same for just approximately 
50 percent of companies in the United States, France, Germany, and Switzerland 
and 40 percent of companies in Austria and Japan (Duranton et al., 2018).

China has a number of advantages that make AI progress more feasible. 
Foremost, the government actively supports companies’ pushes into AI, pursuing 
its stated goal of becoming the world leader in the field by 2030 (Mozur, 2017). 
Additionally, data are more available in China, as there are at least 700 million 
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Internet-connected smartphone users (Gerbert et al., 2018). Finally, in the health 
care market in particular, Chinese privacy laws are more lax than in the United 
States (Simonite, 2019).

European Union and the United Kingdom

In the past decade, Europe has developed a robust AI ecosystem, placing it 
well within the ranks of the United States and China. With an equal balance of 
corporate non-R&D and R&D entities, the region is second to the United States 
for most players in the space (EU Commission Joint Research Centre, 2018). 
However, unlike the United States and China where government funding has 
propelled the industry, AI in Europe stems from accelerating investment from 
private equity and venture capital firms (Ernst and Young, 2019).

To increase global competitiveness there has been a recent uptick of national 
attention and investment in AI (Ernst and Young, 2019). Several countries, 
namely Germany and France, have written national AI strategies, although each 
differs in motivation and approach. Dedicating €3 billion to AI research and 
development, Germany aims to expand the integration of AI in business processes. 
Comparatively, the French plan focuses on the potential of AI for defense and 
security, transportation, and health (Franke and Sartori, 2019).

Ultimately, the European Union sees the strength in advancing its AI agenda 
through coordination among its member states. In April 2018, 25 EU countries 
pledged to work together to boost “Europe’s technology and industrial capacity 
in AI” while “addressing socio-economic challenges and ensuring an adequate 
legal and ethical framework” (European Union Member States Representatives, 
2018). Adhering to its commitment to ethics, the European Union released 
guidelines in April 2019 for the development of trustworthy AI solutions that 
could foreseeably shape the regulation of AI in the European Union and overseas 
(EU Commission, 2019).

United Kingdom

It is unsurprising that the United Kingdom leads Europe in AI. As previously 
discussed, Turing’s efforts in the 1950s planted the seeds for the country’s leadership 
in this area, which, for the most part, has been cultivated by the country’s thriving 
startup community (UK House of Commons, Science and Technology Committee, 
2016; UK House of Lords, 2018). More recently, the government has engaged in 
improving the country’s AI standing through financial support and the launch of 
several AI initiatives aimed at exploring and preparing for the sustainable procurement 
of AI technology. Building on the findings of these initiatives, the United Kingdom 
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in 2018 unveiled its AI Sector Deal, a broad industry plan to stimulate innovation, 
build digital infrastructure, and develop workforce competency in data science, 
engineering, and mathematics (UK Government, 2019).

Academic

In the United States, MIT, Stanford, and Carnegie Mellon pioneered AI 
research in the 1960s, and these, and many others, continue to do so today. 
Cambridge University in the United Kingdom and Tsinghua University 
in China also produce leading AI research. Also important was the role of 
commercially supported research institutes, such as Nokia Bell Labs (formerly 
Bell Laboratories), which supported much of Claude E. Shannon’s pioneering 
work in digital communications and cryptography, and Xerox PARC, which 
continues with laboratories such as Microsoft Research and Facebook’s 
Building X (Shannon, 1940; Xerox, 2019). Indeed, there is significant tension 
between commercial facilities and academic institutions regarding talent 
(Reuters, 2016). Uber, for instance, at one point recruited almost the entire 
computer vision faculty of Carnegie Mellon, to the university’s consternation.

AI-specific conferences, such as the Conference on Neural Information Processing 
Systems4 (NeurIPS), the preeminent academic AI conference, attract thousands of 
abstract submissions annually. Furthermore, the number of AI submissions to journals 
and conferences that are not AI specific is increasing annually.

Commercial Sector

Programmers have always developed AI systems in order to achieve specific 
goals, and this inherent usefulness of the technology has frequently spawned or 
spun out into commercial activity. This activity has been focused in the technology 
sector, but a significant development during 2017 and 2018 was the focus on the 
digital transformation of other industries seeking to lay a foundation so that they 
might capitalize on the advantages of AI. Health care is one such sector.

In addition to the academic participants in the founding Dartmouth Summer 
Research Project on Artificial Intelligence, the sole commercial participant was 
Trenchard More of IBM. Since the 1956 meeting, IBM has maintained an active 
role in the AI community. In 2011, IBM captured the public imagination by 
winning Jeopardy! with its AI system Watson (Wikipedia, 2019b). Watson has 
evolved into a commercially available family of products and has also been deployed 
with variable success in the clinical setting (Freeman, 2017; Herper, 2017).

4 See https://nips.cc.

https://nips.cc
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Many of the most successful technology companies, including Amazon, 
Facebook, Google, Microsoft, Tesla, and Uber, are deeply reliant on AI within 
their products and have contributed significantly to its expansion.

In addition to these more established companies, the past 5 years have witnessed 
something akin to a Cambrian explosion of the number of startups in the AI 
space. A good, if instantly outdated, reference is CBInsight’s AI 100, which lists 
the 100 most promising startups in the field (CBInsights, 2019).

Professional Societies

In addition, a number of civil and professional societies exist that provide 
leadership and policy in the AI space. These include, but are not limited to, those 
listed below.

IEEE (Institute of Electrical and Electronics Engineers) is the professional society 
for engineers, scientists, and allied professionals, including computer scientists, 
software developers, information technology professionals, physicists, and medical 
doctors. IEEE has formed several societies, such as the Signal Processing Society 
and Computational Intelligence Society, both of which produce publications 
relating to AI.

The Association for Computing Machinery (ACM) is a professional society for 
computing educators, researchers, and professionals. A special interest group on 
AI, known as SIGAI, exists within ACM.

The Electronic Frontier Foundation is a nonprofit agency concerned with 
digital liberties and rights. It considers AI ethics and laws and aims to protect the 
rights of users and creators of AI technology.

Notably in health care, the American Medical Association (AMA) passed its 
first policy recommendation on augmented intelligence in June 2018. The policy 
states that AMA will “promote [the] development of thoughtfully designed, high-
quality, clinically validated health care AI” (AMA, 2018). Furthermore, the AMA 
Journal of Ethics dedicated its February 2019 issue to AI in health care.

Nonprofits

As a reaction to an increasing concentration of AI within the commercial 
sector, OpenAI was founded as a nonprofit research entity. Along the same 
vein as the open source movement, which maintains the general availability 
of software, OpenAI’s mission is to promote the accessibility of AI intellectual 
property to all for the purposes of developing technology that services the public 
good (OpenAI, 2019).
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Public–Private Partnerships

There are other notable public–private partnerships that have recently formed 
to work in the AI sector to bridge collaboration in these spaces. For example, 
Partnership for AI is a large consortium of more than 90 for-profit and nonprofit 
institutions in multiple countries to share best practices and further research in 
AI, to advance public understanding of AI, and to promote socially benevolent 
applications in AI (Partnership on AI, 2018). Another example is AINow, which 
is hosted by New York University but receives funding from a variety of large 
for-profit and nonprofit institutions interested in AI development.

KEY CONSIDERATIONS

In summary, we would like to highlight key considerations for future AI 
applications and endeavors, which can be learned by examining AI’s history and 
evaluating AI up to the current era.

• As described in more detail in Chapters 3 and 4, history has shown that AI has 
gone through multiple cycles of emphasis and disillusionment in use. It is critical 
that all stakeholders be aware of and actively seek to educate and address public 
expectations and understanding of AI (and associated technologies) in order to 
manage hype and establish reasonable expectations, which will enable AI to be 
applied in effective ways that have reasonable opportunities for sustained success.

•  Integration of reinforcement learning into various elements of the health care 
system will be critical in order to develop a robust, continuously improving 
health care industry and to show value for the large efforts invested in data 
collection.

•  Support and emphasis for open source and free tools and technologies for use 
and application of AI will be important to reduce cost and maintain wide use 
of AI technologies as the domain transitions from exponential growth to a 
future plateau stage of use.

•  The domain needs strong patient and consumer engagement and empowerment 
to ensure that preferences, concerns, and expectations are transmitted and 
ethically, morally, and appropriately addressed by AI stakeholder users.

•  Large-scale development of AI technologies in industries outside of health 
care should be carefully examined for opportunities for incorporation of those 
advances within health care. Evaluation of these technologies should include 
consideration for whether they could effectively translate to the processes and 
workflows in health care.
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INTRODUCTION

This chapter explores the positive, transformative potential of artificial intelligence 
(AI) for health and health care. We discuss possible AI applications for patients and 
their families; the caregiving team of clinicians, public health professionals, and 
administrators; and health researchers (Roski et al., 2018). These solutions offer 
readers a glimpse of a possible future. We end by offering perspective about how 
AI might transform health care and by providing high-level considerations for 
addressing barriers to that future.

The health care industry has been investing for years in technology solutions, 
including AI. There have been some promising examples of health care AI 
solutions, but there are gaps in the evaluation of these tools in the peer-reviewed 
literature, and so it can be difficult to assess their impact. Also difficult to assess is 
the impact of combined solutions. Specific technology solutions when coupled 
may improve positive outcomes synergistically. For example, an AI solution may 
become exponentially more powerful if it is coupled with augmented reality, 
virtual reality, faster computing systems, robotics, or the Internet of Things (IoT). 
It is impossible to predict in advance.

This chapter presents the potential of AI solutions for patients and families, 
clinical care teams, public health program managers, business administrators, and 
researchers. Table 3-1 provides examples of the types of applications of AI for 
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TABLE 3-1 | Examples of Artificial Intelligence Applications for Stakeholder Groups

Use Case or 
User Group Category Examples of Applications Technology

Patients and 
families

Health monitoring
Benefit/risk 
assessment

• Devices and wearables
•  Smartphone and tablet apps, 

websites

Machine learning, natural 
language processing (NLP), 
speech recognition, chatbots

Disease prevention 
and management

• Obesity reduction
•  Diabetes prevention and 

management
•  Emotional and mental 

health support

Conversational artificial 
intelligence (AI), NLP, speech 
recognition, chatbots

Medication 
management

• Medication adherence Robotic home telehealth

Rehabilitation •  Stroke rehabilitation using 
apps and robots

Robotics

Clinician care 
teams

Early detection, 
prediction, and 
diagnostics tools

•  Imaging for cardiac 
arrhythmia detection, 
retinopathy

•  Early cancer detection 
(e.g., melanoma)

Machine learning

Surgical 
procedures

•  Remote-controlled robotic 
surgery

•  AI-supported surgical 
roadmaps

Robotics, machine learning

Precision 
medicine

•  Personalized chemotherapy 
treatment

Supervised machine learning, 
reinforcement learning

Patient safety • Early detection of sepsis Machine learning

Public health 
program 
managers

Identification of 
individuals at risk

•  Suicide risk identification 
using social media

Deep learning (convolutional 
and recurrent neural networks)

Population health • Eldercare monitoring Deep learning, geospatial pattern 
mining, machine learning

Population health •  Air pollution epidemiology
• Water microbe detection

Deep learning, geospatial pattern 
mining, machine learning

Business 
administrators

International 
Classification of 
Diseases, 10th 
Revision coding

•  Automatic coding of 
medical records for 
reimbursement

Machine learning, NLP

Fraud detection • Health care billing fraud
•  Detection of unlicensed 

providers

Supervised, unsupervised, and 
hybrid machine learning

Cybersecurity •  Protection of personal 
health information

Machine learning, NLP

Physician 
management

•  Assessment of physician 
competence

Machine learning, NLP

Researchers Genomics •  Analysis of tumor genomics Integrated cognitive computing
Disease prediction •  Prediction of ovarian cancer Neural networks
Discovery •  Drug discovery and design Machine learning, computer- 

assisted synthesis
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these stakeholders. These examples are not exhaustive. The following sections 
explore the promise of AI in health care in more detail.

AI SOLUTIONS FOR PATIENTS AND FAMILIES

AI could soon play an important role in the self-management of chronic 
diseases such as cardiovascular diseases, diabetes, and depression. Self-management 
tasks can range from taking medications, modifying diet, and getting more 
physically active to care management, wound care, device management, and the 
delivery of injectables. Self-management can be assisted by AI solutions, including 
conversational agents, health monitoring and risk prediction tools, personalized 
adaptive interventions, and technologies to address the needs of individuals with 
disabilities. We describe these solutions in the following sections.

Conversational Agents

Conversational agents can engage in two-way dialogue with the user via speech 
recognition, natural language processing (NLP), natural language understanding, 
and natural language generation (Laranjo et al., 2018). AI is behind many of them. 
These interfaces may include text-based dialogue, spoken language, or both. They 
are called, variously, virtual agents, chatbots, or chatterbots. Some conversational 
agents present a human image (e.g., the image of a nurse or a coach) or nonhuman 
image (e.g., a robot or an animal) to provide a richer interactive experience. These 
are called embodied conversational agents (ECAs). These visible characters provide a 
richer and more convincing interactive experience than non-embodied voice-only 
agents such as Apple’s Siri, Amazon’s Alexa, or Microsoft’s Cortana. The imagistic 
entities can communicate nonverbally through hand gestures and facial expressions.

In the “self-management” domain, conversational agents already exist to address 
depression, smoking cessation, asthma, and diabetes. Although many chatbots 
and ECAs exist, evaluation of these agents has, unfortunately, been limited 
(Fitzpatrick et al., 2017).

The future potential for conversational agents in self-management seems high. 
While simulating a real-world interaction, the agent may assess symptoms, report 
back on outputs from health monitoring, and recommend a course of action 
based on these varied inputs. Most adults say they would use an intelligent virtual 
coach or an intelligent virtual nurse to monitor health and symptoms at home. 
There is somewhat lower enthusiasm for mental health support delivered via this 
method (Accenture, 2018).

Social support improves treatment outcomes (Hixson et al., 2015; Wicks 
et al., 2012). Conversational agents can make use of humans’ propensity to 
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treat computers as social agents. Such support could be useful as a means of 
combating loneliness and isolation (Stahl and Coeckelbergh, 2016; Wetzel, 
2018). In other applications, conversational agents can be used to increase the 
engagement and effectiveness of interventions for health behavior change. 
Most studies of digital interventions for health behavior change have included 
support from either professionals or peers. It is worth noting that professionally 
supported interventions cost two to three times what technology interventions 
cost. A conversational agent could provide some social support and increased 
engagement while remaining scalable and cost-effective. Moreover, studies have 
shown that people tend to be more honest when interacting with technology 
than with humans (Borzykowski, 2016).

In the next decade, conversational AI will probably become more widely 
used as an extender of clinician support or as a stopgap where other options are 
not available (see Chapter 1). Now under development are new conversational 
AI strategies to infer emotion from voice analysis, computer vision, and other 
sources. We think it is likely that systems will thus become more conversant in the 
emotional domain and more effective in their communication.

Health Monitoring and Risk Prediction

AI can use raw data from accelerometers, gyroscopes, microphones, cameras, 
and other sensors, including smartphones. Machine learning algorithms can be 
trained to recognize patterns from the raw data inputs and then categorize these 
patterns as indicators of an individual’s behavior and health status. These systems 
can allow patients to understand and manage their own health and symptoms as 
well as share data with medical providers.

The current acceptance of wearables, smart devices, and mobile health applications 
has risen sharply. In just a 4-year period, between 2014 and 2018, the proportion of 
U.S. adults reporting that they use wearables increased from 9 percent to 33 percent. 
The use of mobile health apps increased from 16 percent to 48 percent (Accenture, 
2018). Consumer interest is high (~50 percent) in using data generated by apps, 
wearables, and IoT devices to predict health risks (Accenture, 2018). Since 2013, AI 
startup companies with a focus on health care and wearables have raised $4.3 billion 
to develop, for example, bras designed for breast cancer risk prediction and smart 
clothing for cardiac, lung, and movement sensing (Wiggers, 2018).

Timely Personalized Inter ventions

AI-driven adaptive interventions are called JITAIs, or “just-in-time adaptive 
interventions.” These are learning systems that deliver dynamic, personalized 
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treatment to users over time (Nahum-Shani et al., 2015; Spruijt-Metz and Nilsen, 
2014). The JITAI makes decisions about when and how to intervene based on 
response to prior intervention, as well as on awareness of current context, whether 
internal (e.g., mood, anxiety, blood pressure) or external (e.g., location, activity). 
JITAI assistance is provided when users are most in need of it or will be most 
receptive to it. These systems can also tell a clinician when a problematic pattern 
is detected. For example, a JITAI might detect when a user is in a risky situation 
for substance abuse relapse—and deliver an intervention against it.

These interventions rely on sensors, rather than a user’s self-report, to detect 
states of vulnerability or intervention opportunity. This addresses two key self-
management challenges: the high user burden of self-monitoring and the limitations 
of self-awareness. As sensors become more ubiquitous in homes, in smartphones, 
and on bodies, the data sources for JITAIs are likely to continue expanding. AI can 
be used to allow connected devices to communicate with one another. (Perhaps 
a glucometer might receive feedback from refrigerators regarding the frequency 
and types of food consumed.) Leveraging data from multiple inputs can uniquely 
enhance AI’s ability to provide real-time behavioral management.

Assistance for Individuals with Cognitive Disabilities

According to the Centers for Disease Control and Prevention, 16 million 
individuals are living with cognitive disability in the United States alone. Age 
is the single best predictor of cognitive impairments, and an estimated 5 million 
Americans more than 65 years old have Alzheimer’s disease. These numbers are 
expected to increase due to the growth of an aging population: currently nearly 
9 percent of all adults are more than 65 years old, a percentage expected to double 
by 2050 (CDC, 2018; Family Caregiver Alliance, 2019). Critically, 15.7 million 
family members provide unpaid care and support to individuals with Alzheimer’s 
disease or other dementias (Alzheimers.net, 2019). The current system of care 
is unprepared to handle the current or future load of patient needs, or to allow 
individuals to “age in place” at their current homes rather than relocating to 
assisted living or nursing home facilities (Family Caregiver Alliance, 2019).

Smart home monitoring and robotics may eventually use AI to address these 
challenges (Rabbitt et al., 2015). Home monitoring has the potential to increase 
independence and improve aging at home by monitoring physical space, falls, 
and amount of time in bed. (Excessive time in bed can be both the cause and 
outcome of depression, and places the elderly at high risk for bedsores, loss of 
mobility, and increased mortality.) Currently available social robots such as PARO, 
Kabochan, and PePeRe provide companionship and stimulation for dementia 
patients. Recently, the use of robotic pets has been reported to be helpful in 
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reducing agitation in nursing home patients with dementia (Schulman-Marcus 
et al., 2019; YellRobot, 2018).

For example, PARO is a robot designed to look like a cute, white baby seal 
that helps calm patients in hospitals and nursing homes. Initial pilot testing of 
PARO with 30 patient–caregiver dyads showed that PARO improved affect and 
communication among those dementia patients who interacted with the robot. 
This benefit was especially seen among those with more cognitive deficits. Larger 
clinical trials have also demonstrated improvements in patient engagement, 
although the effects on cognitive symptoms remain ambiguous (Moyle et al., 2017).

Although socially assistive robots are designed primarily for older adult consumers, 
caregivers also benefit from them because they relieve caregiver burden a bit and thus 
improve their well-being. As the technology improves, it may be that robots will do 
increasingly sophisticated tasks. Future applications of robotics are being developed 
to provide hands-on care. Platforms for smart home monitoring may eventually 
incorporate caregiver and patient needs in one seamless experience to ensure a 
family-wide experience rather than individual experiences. Designers of smart home 
monitoring should consider the ethics of equitable access by designing AI for the 
elderly, the dependent, and the short- or long-term disabled (Johnson, 2018).

AI SOLUTIONS FOR THE CLINICIAN CARE TEAM

There are two main areas of opportunity for AI in clinical care: (1) enhancing 
and optimizing care delivery, and (2) improving information management, user 
experience, and cognitive support in electronic health records (EHRs). Strides 
have been made in these areas for decades, largely through rule-based, expert-
designed applications typically focused on specific clinical areas or problems. AI 
techniques offer the possibility of improving performance further.

Care Deliver y

The amount of relevant data available for patient care is growing and will 
continue to grow in volume and variety. Data recorded digitally through EHRs 
only scratch the surface of the types of data that (when appropriately consented) 
could be leveraged for improving patient care. Clinicians are beginning to have 
access to data generated from wearable devices, social media, and public health 
records; to data about consumer spending, grocery purchase nutritional value, 
and an individual’s exposome; and to the many types of -omic data specific to an 
individual. AI will probably, we think, have a profound effect on the entire clinical 
care process, including prevention, early detection, risk/benefit identification, 
diagnosis, prognosis, and personalized treatment.
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Prediction, Early Detection, Screening, and Risk Assessment

The area of prediction, early detection, and risk assessment for individuals is 
one of the most fruitful AI applications (Sennaar, 2018). In this chapter, we discuss 
examples of such use; Chapters 5 and 6 provide thoughts about external evaluation.

Diagnosis

There are a number of demonstrations of AI in diagnostic imaging. Diagnostic 
image recognition can differentiate between benign and malignant melanomas, 
diagnose retinopathy, identify cartilage lesions within the knee joint (Liu et al., 
2018), detect lesion-specific ischemia, and predict node status after positive biopsy 
for breast cancer. Image recognition techniques can differentiate among competing 
diagnoses, assist in screening patients, and guide clinicians in radiotherapy and 
surgery planning (Matheson, 2018). Automated image classification may not 
disrupt medicine as much as the invention of the roentgenogram did, but the roles 
of radiologists, dermatologists, pathologists, and cardiologists will likely change as 
AI-enabled diagnostic imaging improves and expands. Combining output from 
an AI diagnostic imaging prediction with prediction from the physician seems to 
decrease human error (Wang et al., 2016). Although some believe AI will replace 
physicians in diagnostic imaging, it is more likely that these techniques will mainly 
be assistive, sorting and prioritizing images for more immediate review, highlighting 
important findings that might have been missed, and classifying simple findings 
so that the humans can spend more time on complex cases (Parakh et al., 2019).

Histopathologic diagnosis has seen similar gains in cancer classification from 
tissue, in universal microorganism detection from sequencing data, and in analysis 
of a single drop of body fluid to find evidence of bacteria, viruses, or proteins that 
could indicate an illness (Best, 2017).

Surgery

AI is becoming more important for surgical decision making. It brings to 
bear diverse sources of information, including patient risk factors, anatomic 
information, disease natural history, patient values, and cost, to help physicians and 
patients make better predictions regarding the consequences of surgical decisions. 
For instance, a deep learning model was used to predict which individuals with 
treatment-resistant mesial temporal lobe epilepsy would most likely benefit from 
surgery (Gelichgerrcht et al., 2018). AI platforms can provide roadmaps to aid 
the surgical team in the operating room, reducing risk and making surgery safer 
(Newmarker, 2018). In addition to planning and decision making, AI may be 
applied to change surgical techniques. Remote-controlled robotic surgery has 



72  |  Artificial Intelligence in Health Care

been shown to improve the safety of interventions where clinicians are exposed to 
high doses of ionizing radiation and makes surgery possible in anatomic locations 
not otherwise reachable by human hands (Shen et al., 2018; Zhao et al., 2018). As 
autonomous robotic surgery improves, it is likely that surgeons will in some cases 
oversee the movements of robots (Shademan et al., 2016).

Personalized Management and Treatment

Precision medicine allows clinicians to tailor medical treatment to the individual 
characteristics of each patient. Clinicians are testing whether AI will permit them 
to personalize chemotherapy dosing and map patient response to a treatment so as 
to plan future dosing (Poon et al., 2018). AI-driven NLP has been used to identify 
polyp descriptions in pathology reports that then trigger guideline-based clinical 
decision support to help clinicians determine the best surveillance intervals for 
colonoscopy exams (Imler et al., 2014). Other AI tools have helped clinicians select 
the best treatment options for complex diseases such as cancer (Zauderer et al., 2014).

The case of clinical equipoise—when clinical practice guidelines do not 
present a clear preference among care treatment options—also has significant 
potential for AI. Using retrospective data from other patients, AI techniques 
can predict treatment responses of different combinations of therapies for an 
individual patient (Brown, 2018). These types of tools may serve to help select a 
treatment immediately and may also provide new knowledge to future practice 
guidelines. Possibly useful will be dashboards demonstrating predicted outcomes 
along with cost of treatment and expected changes based on patient behavior, 
such as increased exercise. These may provide an excellent platform for shared 
decision making involving the patient, family, and clinical team. AI could also 
support a patient-centered medical homes model (Jackson et al., 2013).

As genome-phenome integration is realized, the use of genetic data in AI 
systems for diagnosis, clinical care, and treatment planning will probably increase. 
To truly impact routine care, though, genetic datasets will need to better represent 
the diversity of patient populations (Hindorff et al., 2018).

AI can also be used to find similar cases from patient records in an EHR to 
support treatment decisions based on previous outcomes (Schuler et al., 2018).

Improving Information Management, User Experience, and 
Cognitive Support in EHRs

The following sections describe a few areas that could benefit from AI-supported 
tools integrated with EHR systems, including information management (e.g., clinical 
documentation, information retrieval), user experience, and cognitive support.
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Information Management

EHR systems and regulatory requirements have introduced significant clinical 
documentation responsibilities to providers, without necessarily supporting patient 
care decisions (Shanafelt et al., 2016). AI has the potential to improve the way in 
which clinicians store and retrieve clinical documentation. For example, the role 
of voice recognition systems in clinical documentation is well known. However, 
such systems have been used mostly to support clinicians’ dictation of narrative 
reports, such as clinical notes and diagnostic imaging reports (Hammana et al., 
2015; Zick and Olsen, 2001). As mentioned previously, AI-enabled conversational 
and interactive systems (e.g., Amazon’s Alexa, Apple’s Siri) are now widespread 
outside of health care. Similar technology could be used in EHR systems to 
support various information management tasks. For example, clinicians could ask a 
conversational agent to find specific information in the patient’s record (e.g., “Show 
me the patient’s latest HbA1c results”), enter orders, and launch EHR functions. 
Instead of clicking through multiple screens to find relevant patient information, 
clinicians could verbally request specific information and post orders while still 
looking at and talking to the patient or caregivers (Bryant, 2018). In the near future, 
this technology has the potential to improve the patient–provider relationship by 
reducing the amount of time clinicians spend focused on a computer screen.

Cognitive Support

AI has the potential to not only improve existing clinical decision support 
(CDS) modalities but also enable a wide range of innovations with the potential 
to disrupt patient care. Improved cognitive support functions include smarter 
CDS alerts and reminders as well as better access to peer-reviewed literature.

Smarter CDS Alerts and Reminders

A core cause for clinicians’ dissatisfaction with EHR systems is the high incidence 
of irrelevant pop-up alerts that disrupt the clinical workflow and contribute to 
“alert fatigue” (McCoy et al., 2014). This problem is partially caused by the low 
specificity of alerts, which are frequently based on simple and deterministic 
handcrafted rules that fail to consider the full clinical context. AI can improve the 
specificity of alerts and reminders by considering a much larger number of patient 
and contextual variables (Joffe et al., 2012). It can provide probability thresholds 
that can be used to prioritize alert presentation and determine alert format in the 
user interface (Payne et al., 2015). It can also continuously learn from clinicians’ 
past behavior (e.g., by lowering the priority of alerts they usually ignore).
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Improved Access to Biomedical Literature to Support Clinical 
Decision Making

Recent advances in AI show promising applications in clinical knowledge 
retrieval. For example, mainstream medical knowledge resources are already using 
machine learning algorithms to rank search results, including algorithms that 
continuously learn from users’ search behavior (Fiorini et al., 2018). AI-enabled 
clinical knowledge retrieval tools could also be accessed through the same 
conversational systems that allow clinicians to retrieve patient information from 
the EHR. Through techniques such as information extraction, NLP, automatic 
summarization, and deep learning, AI has the potential to transform static narrative 
articles into patient-specific, interactive visualizations of clinical evidence that 
could be seamlessly accessed within the EHR. In addition, “living systematic 
reviews” can continuously update clinical evidence as soon as the results of new 
clinical trials become available, with EHRs presenting evidence updates that may 
warrant changes to the treatment of specific patients (Elliott et al., 2014).

AI SOLUTIONS FOR POPULATION/PUBLIC HEALTH 
PRO GRAM MANAGEMENT

Next, we explore AI solutions for population and public health programs. These 
include solutions that could be implemented by health systems (e.g., accountable 
care organizations), health plans, or city, county, state, and federal public health 
departments or agencies. Population health examines the distribution of health 
outcomes within a population, the range of factors that influence the distribution 
of health outcomes, and the policies and interventions that affect those factors 
(Kindig and Stoddart, 2003). Population health programs are often implemented 
through nontraditional partnerships among different sectors of the community—
public health, industry, academia, health care, local government entities, etc. On the 
other hand, public health is the science of protecting and improving the health of 
people and their communities (CDC Foundation, 2019). This work is achieved by 
promoting healthy lifestyles, researching disease and injury prevention, and detecting, 
preventing, and responding to infectious diseases. Overall, public health is concerned 
with protecting the health of entire populations. These populations can be as small as 
a local neighborhood or as big as an entire country or region of the world.

Health Communication and Health Campaigns Enabled by AI

AI can help identify specific demographics or geographical locations where the 
prevalence of disease or high-risk behaviors exist. Researchers have successfully 
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applied convolutional neural network analytic approaches to quantify associations 
between the built environment and obesity prevalence. They have shown that 
physical characteristics of a neighborhood can be associated with variations in 
obesity prevalence across different neighborhoods (Maharana and Nsoesie, 2018). 
Shin et al. (2018) applied a machine learning approach that uses both biomarkers 
and sociomarkers to predict and identify pediatric asthma patients at risk of 
hospital revisits.

Without knowing specific symptom-related features, the sociomarker-based 
model correctly predicted two out of three patients at risk. Once identified, 
population or regions can be targeted with computational health campaigns 
that blur the distinction between interpersonal and mass influence (Cappella, 
2017). However, the risks of machine learning in these contexts have also been 
described (Cabitza et al., 2017). They include (1) the risk that clinicians become 
unable to recognize when the algorithms are incorrect, (2) lack of an ability for 
the algorithms to address the context of care, or (3) the intrinsic lack of reliability 
of some medical data. However, many of these challenges are not intrinsic to 
machine learning or AI, but rather represent misuse of the technologies.

Population Health Improvement Through 
Chronic Disease Management

A spectrum of market-ready AI approaches to support population health 
programs already exists. They are used in areas of automated retinal screening, 
clinical decision support, predictive population risk stratification, and patient 
self-management tools (Contreras and Vehi, 2018; Dankwa-Mullan et al., 2019). 
Several solutions have received regulatory approval; for example, the U.S. Food 
and Drug Administration approved Medtronic’s Guardian Connect, marking the 
first AI-powered continuous glucose monitoring system. Crowd-sourced, real-
world data on inhaler use, combined with environmental data, led to a policy 
recommendations model that can be replicated to address many public health 
challenges by simultaneously guiding individual, clinical, and policy decisions 
(Barrett et al., 2018).

There is an alternative approach to standard risk prediction models that applies 
AI tools. For example, predictive models using machine learning algorithms may 
facilitate recognition of clinically important unanticipated predictor variables that 
may not have previously been identified by “traditional” research approaches that 
rely on statistical methods testing a priori hypotheses (Waljee et al., 2014). Enabled 
by the availability of data from administrative claims and EHRs, machine learning 
can enable patient-level prediction, which moves beyond average population 
effects to consider personalized benefits and risks. Large-scale, patient-level 
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prediction models from observational health care data are facilitated by a 
common data model that enables prediction researchers to work across computer 
environments. An example can be found from the Observational Health Data 
Sciences and Informatics collaborative, which has adopted the Observational 
Medical Outcomes Partnership common data model for patient-level prediction 
models using observational health care data (Reps et al., 2018).

Another advantage of applying AI approaches to predictive models is the ability 
not only to predict risk but also the presence or absence of a disease in an individual. 
As an example, successful use of a memetic pattern-based algorithm approach was 
demonstrated in a broad risk spectrum of patients undergoing coronary artery 
disease evaluation and was shown to successfully identify and exclude coronary 
artery disease in a population instead of just predicting the probability of future 
events (Zellweger et al., 2018). In addition to helping health care organizations 
identify individuals with elevated risks of developing chronic conditions early in the 
disease’s progression, this approach may prevent unnecessary diagnostic procedures in 
patients where procedures may not be warranted and also support better outcomes.

Not all data elements needed to predict chronic disease can be found in 
administrative records and EHRs. Creating risk scores that include a blend 
of social, behavioral, and clinical data may help give providers the actionable, 
360-degree insight necessary to identify patients in need of proactive, preventive 
care while meeting reimbursement requirements and improving outcomes 
(Kasthurirathne et al., 2018).

AI Solutions for Public Health Program Management

Public health professionals are focused on solutions for more efficient and 
effective administration of programs, policies, and services; disease outbreak 
detection and surveillance; and research. Relevant AI solutions are being 
experimented with in a number of areas.

Disease Surveillance

The range of AI solutions that can improve disease surveillance is considerable. 
For a number of years, researchers have tracked and refined the options for tracking 
disease outbreaks using search engine query data. Some of these approaches rely 
on the search terms that users type into Internet search engines (e.g., Google Flu 
Trends). At the same time, caution is warranted with these approaches. Relying 
on data not collected for scientific purposes (e.g., Internet search terms) to predict 
flu outbreaks has been fraught with error (Lazer et al., 2014). Nontransparent 
search algorithms that change constantly cannot be easily replicated and studied. 
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These changes may occur due to business needs (rather than the needs of a flu 
outbreak detection application) or due to changes in search behavior of consumers. 
Finally, relying on such methods exclusively misses the opportunity to combine 
them and co-develop them in conjunction with more traditional methods. As 
Lazer et al. (2014) detail, combining traditional and innovative methods (e.g., 
Google Flu Trends) performs better than either method alone.

Researchers and solution developers have experimented with the integration 
of case- and event-based surveillance (e.g., news and online media, sensors, digital 
traces, mobile devices, social media, microbiological labs, and clinical reporting) 
to arrive at dashboards and analysis approaches for threat verification. Such 
approaches have been referred to as digital epidemiological surveillance and can 
produce timelier data and reduce labor hours of investigation (Kostokova, 2013; 
Zhao et al., 2015). Such analyses rely on AI’s capacities in spatial and spatiotemporal 
profiling, environmental monitoring, and signal detection (i.e., from wearable 
sensors). They have been successfully implemented to build early warning systems 
for adverse drug events, falls detection, and air pollution (Mooney and Pejaver, 
2018). The ability to rely on unstructured data such as photos, physicians’ notes, 
sensor data, and genomic information, when enabled by AI, may lead to additional, 
novel approaches in disease surveillance (Figge, 2018).

Moreover, participatory systems such as social media and listservs could be 
relied on to solicit information from individuals as well as groups in particular 
geographic locations. For example, such approaches may encourage a reduction 
in unsafe behaviors that put individuals at risk for human immunodeficiency 
virus (HIV) infection (Rubens et al., 2014; Young et al., 2017). For example, it 
has been demonstrated that psychiatric stressors can be detected from Twitter 
posts in select populations through keyword-based retrieval and filters and the 
use of neural networks (Du et al., 2018). However, how such AI solutions could 
improve the health of populations or communities is less clear, due to the lack of 
context for some tweets and because tweets may not reflect the true underlying 
mental health status of a person who tweeted. Studies that retroactively analyze 
the tweeting behavior of individuals with known suicide attempts or ideation, or 
other mental health conditions, may allow refinement in such approaches.

Finally, AI and machine learning have been used to develop a dashboard to 
provide live insight into opioid usage trends in Indiana (Bostic, 2018). This tool 
enabled prediction of drug positivity for small geographic areas (i.e., hot spots), 
allowing for interventions by public health officials, law enforcement, or program 
managers in targeted ways. A similar dashboarding approach supported by AI 
solutions has been used in Colorado to monitor HIV surveillance and outreach 
interventions and their impact after implementation (Snyder et al., 2016). This 
tool integrated data on regional resources with near-real-time visualization of 
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complex information to support program planning, patient management, and 
resource allocation.

Environmental and Occupational Health

AI has already made inroads into environmental and occupational health by 
leveraging data generated by sensors, nanotechnology, and robots. For example, 
water-testing sensors with AI tools have been paired with microscopes to detect 
bacterial contamination in treatment plants through hourly water sampling and 
analysis. This significantly reduces the time traditionally spent sending water samples 
for laboratory testing and lowers the cost of certain automated systems (Leider, 2018).

In a similar fashion, remote sensing from meteorological sensors, combined 
with geographic information systems, has been used to measure and analyze air 
pollution patterns in space and over time. This evolving field of inquiry has been 
termed geospatial AI because it combines innovations in spatial science with the 
rapid growth of methods in AI, including machine learning and deep learning. 
In another approach to understanding environmental factors, images of Google 
Street View have been analyzed using deep learning mechanisms to analyze urban 
greenness as a predictor and enabler of exercise (e.g., walking, cycling) (Lu, 2018).

Robots enabled by AI technology have been successfully deployed in a variety of 
hazardous occupational settings to improve worker safety and prevent injuries that 
can lead to costly medical treatments or short- and long-term disability. Robots 
can replace human labor in highly dangerous or tedious jobs that are fatiguing and 
could represent health risks to workers—reducing injuries and fatalities. Similarly, 
the construction industry has relied on AI-enabled robots for handling hazardous 
materials, handling heavy loads, working at elevation or in hard-to-reach places, 
and completing tasks that require difficult work postures, risking injury (Hsiao 
et al., 2017). Some of these robotic deployments are replacing human labor; in 
other instances, humans collaborate with robots to carry out such tasks. Hence, 
the deployment of robots requires workers to develop new skills in directing and 
managing robots and managing interactions between different types of robots or 
equipment, all operating in dynamic work environments.

AI SOLUTIONS FOR HEALTH CARE BUSINESS 
ADMINISTRATORS

Coordination and payment for care in the United States is highly complex. 
It involves the patient, providers, health care facilities, laboratories, hospitals, 
pharmacies, benefit administrators, payers, and others. Before, during, and after a 
patient encounter, administrative coordination occurs around scheduling, billing, 
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and payment. Collectively, we call this the administration of care, or administrative 
workflow. AI might be used in this setting in the form of machine learning models 
that can work alongside administrative personnel to perform mundane, repetitive 
tasks in a more efficient, accurate, and unbiased fashion.

Newer methods in AI, known generally as deep learning, have advantages over 
traditional machine learning, especially in the analysis of text data. The use of 
deep learning is particularly powerful in a workflow where a trained professional 
reviews narrative data and makes a decision about a clear action plan. A vast 
number of prior authorizations exist, with decisions and underlying data; these 
data provide the ideal substrate to train an AI model. Textual information used for 
prior authorization can be used for training a deep learning model that reaches or 
even exceeds the ability of human reviewers, perhaps with even more consistency 
than human reviewers. AI for health care administration will likely be utilized 
extensively, even beyond those solutions deployed for direct clinical care. “While 
all AI solutions give some false positives and false negatives, in administration, 
these will mostly produce annoyances, but should be monitored closely to ensure 
that patient safety is never impacted.”

As AI solutions become more sophisticated and automated, it may happen that 
a variety of AI methodologies will be deployed for a given solution. For example, 
a request by a patient to refill a prescription might involve speech recognition or 
AI chatbots, a rules-based system to determine if prior authorization is required, 
automated provider outreach, and a deep learning system for prior authorization 
when needed. It is worth noting that deep learning systems already drive many 
of today’s speech recognition, translation, and chatbot programs.

We provide illustrative (non-exhaustive) examples in Table 3-2 for different 
types of applications of AI solutions to support routine health care administration 
processes.

Prior Authorization

Most health plans and pharmacy benefit managers require prior authorization 
of devices, durable equipment, labs, and procedures. The process includes the 
submission of patient information along with the proposed request, along with 
justification. Determinations require professional skill, analysis, and judgment. 
Automating this process can reduce biased decisions and improve speed, 
consistency, and quality of decisions.

There are a number of different ways that AI is applied today. For example, 
AI could simply be used to sort cases to the appropriate level of reviewer (e.g., 
nurse practitioner, physician advisor, medical director). Or, AI could identify and 
highlight the specific, relevant information in long documents or narratives to 
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TABLE 3-2 | Illustrative Examples of Artificial Intelligence Solutions to Aid in Health Care 
Administration Processes

Topic
Example 
Opportunity Value

Output/
Intervention Data

Prior authorization 
(Rowley, 2016; 
Wince, 2018; Zieger, 
2018)

Automate decisions 
on drugs, labs, or 
procedures

Reduced cost, 
efficiency, 
improved quality, 
reduce bias

Authorization 
or rejection

Relevant patient 
electronic health 
record (EHR) 
data

Fraud, waste (Bauder 
and Khoshgoftaar, 
2017; da Rosa, 2018; 
He et al., 1997)

Identify appropriate 
or fraudulent claims

Reduced cost, 
improved care

Identification 
of targets for 
investigation

Provider claims 
data

Provider directory 
management

Maintain accurate 
information on 
providers

Reduced patient 
frustration through 
accurate provider 
availability, avoid 
Medicare penalties

Accurate 
provider 
directory

Provider data 
from many 
sources

Adjudication Determine if a 
hospital should be 
paid for an admission 
versus observation

Improved 
compliance, 
accurate payments

Adjudication 
decision

Relevant patient 
EHR record 
data

Automated coding 
(Huang et al., 2019; Li 
et al., 2018; Shi et al., 
2017; Xiao et al., 2018)

Automate ICD-10a 
coding of patient 
encounters

Improved 
compliance, 
accurate payments

ICD-10 
coding

Relevant patient 
EHR record 
data

Chart abstraction 
(Gehrmann et al., 
2017)

Summarize 
redundant data into a 
coherent narrative or 
structured variables

Reduced cost, 
efficiency, 
improved quality

Accurate, 
clean 
narrative/
problem list

Relevant patient 
EHR record 
data

Patient scheduling 
(Jiang et al., 2018; 
Nelson et al., 2019; 
Sharma, 2016)

Identify no-shows 
and optimize 
scheduling

Improved patient 
satisfaction, faster 
appointments, 
provider efficiency

Optimized 
physician 
schedule

Scheduling 
history, EHR 
data

a The ICD-10-CM (International Classification of Diseases, 10th Revision, Clinical Modification) is a system used by 

physicians and other health care providers to classify and code all diagnoses, symptoms, and procedures recorded in 

conjunction with hospital care in the United States.

produce information regarding estimated costs or benefit/risk assessment to aid 
a consumer in a decision.

Automation of prior authorization could reduce administrative costs, frustration, 
and idle time for provider and payer alike. Ultimately, such a process could lead 
to fewer appeals as well, which is a costly outcome of any prior authorization 
decision. A prior authorization model would need to work in near real time, 
because the required decisions are typically time sensitive.
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The use of prior authorization limits liability, but AI implementation could 
create some liability risk. Some AI models are or become biased, and examples 
of this have been featured in the news recently. There has been coverage of 
AI models discriminating on names associated with particular ethnic groups, 
mapping same-day delivery routes to avoid high-crime areas, discriminating in 
lending practices, etc. (Hamilton, 2019; Ingold and Soper, 2016; Ward-Foxton, 
2019; Williamson-Lee, 2018).

Automated Coding

Coding is an exacting, expert-driven process that extracts information from 
EHRs for claims submissions and risk adjustment. These are called ICD-10 codes, 
from the International Classification of Diseases, 10th Revision (ICD-10). It is a human 
labor–intensive process that requires an understanding of language, expertise in 
clinical terminology, and a nuanced, expert understanding of administrative coding 
of medical care. Of note, codes are often deleted and added, and their assignment 
to particular medical descriptions often changes. Computer-assisted coding has 
existed for more than a decade; it typically has used more traditional, semantic-
based NLP. Proximity and other methods are used to identify appropriate codes 
to assist or pre-populate manual coding.

The accuracy of coding is very important, and the process of assigning an 
unspecified number of multiple labels to an event is a complex one. It can lead to 
false negatives and false positives. False negatives in coding may result in a denial 
of reimbursement. False positives may lead to overcharges, compliance issues, and 
excess cost to payers.

There are opportunities for AI techniques to be applied to this administrative 
coding. Notes and patient records can be vectorized within this space, using 
tools such as Word2vec, so that they might be used in deep learning and other AI 
predictive models along with a wide variety of structured data, such as medication 
orders, laboratory tests, and vital signs.

Because of the complexity of multilabel prediction, humans will have to 
supervise and review the process for the foreseeable future. This also increases 
the need for transparency in the algorithmic outputs as part of facilitating 
human review. This is especially important in the review of coding in long EHR 
narratives. Transparency will also be helpful for monitoring automated processes 
because treatments and medical standards change over time and algorithms have 
to be retrained. This is a topic discussed in more detail in Chapter 6.

In the short term, AI coding solutions may help coders and create checks for 
payers. In the long term, increasing automation may be achieved for some or 
many types of encounters/hospitalizations. This automation will be reliant on 
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data comprehensiveness, public acceptance, algorithm accuracy, and appropriate 
regulatory frameworks.

AI Solutions for Research and Development Professionals

The uses of AI technologies in research are broad; they frequently drive 
the development of new machine learning algorithms. To narrow this massive 
landscape, we focus our discussion on research institutions with medical training 
facilities. These medical school–affiliated health care providers often house massive 
and multiple large-scale data repositories (such as biobanks, Digital Imaging and 
Communications in Medicine or DICOM systems, and EHR systems).

Mining EHR Data

Research with EHR data offers promising opportunities to advance biomedical 
research and improve health care by interpreting structured, unstructured (e.g., 
free text), genomic, and imaging data.

Machine Learning

Extracting practical information from EHR data is challenging because such 
data are highly dimensional, heterogeneous, sparse, and often of low quality 
(Jensen et al., 2012; Zhao et al., 2017). Nevertheless, AI technologies are being 
applied to EHR data. AI techniques used on these data include a vast array of 
data mining approaches, from clustering and association rules to deep learning. 
We focus our discussion in the sections below on areas of present key importance.

Deep Learning

Deep learning algorithms rely on the large quantities of data and massive 
computer resources, both of which are newly possible in this era. Deep learning can 
identify underlying patterns in data well beyond the pattern-perceiving capacities 
of humans. Deep learning and its associated techniques have become popular in 
many data-driven fields of research. The principal difference between deep and 
traditional (i.e., shallow) machine learning paradigms lies in the ability of deep 
learning algorithms to construct latent data representations from a large number 
of raw features, often through deep architectures (i.e., many layers) of artificial 
neural networks. This “unsupervised feature extraction” sometimes permits 
highly accurate predictions. Recent research on EHR data has shown that deep 
learning predictive models can outperform traditional clinically used predictive 
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models for predicting early detection of heart failure onset (Choi et al., 2017), 
various cancers (Miotto et al., 2016), and onset of and weaning from intensive 
care unit interventions (Suresh et al., 2017).

Nevertheless, the capacity of deep learning is a double-edged sword. The 
downside of deep learning comes from exactly where its superiority to other 
learning paradigms originates—that is, its ability to build and learn features. 
Model complexity means that human interpretability of deep learning models is 
almost nonexistent, because it is extremely hard to infer how the model makes 
its predictions so well. Deep learning models are “black box” models, where the 
internal workings of the algorithms remain unclear or mysterious to users of 
these models. As in other black box AI approaches, there is significant resistance 
to implementing deep learning models in the health care delivery process.

Applications to Imaging Data

Detecting abnormal brain structure is much more challenging for humans and 
machines than detecting a broken bone or a fracture. Exciting things are being 
done in this area with deep learning. One recent study predicted age from brain 
images (Cole et al., 2017). Multimodal image recognition analysis has discovered 
novel impairments not visible from a single view of the brain (e.g., structural 
MRI versus functional MRI) (Plis et al., 2018). Companies such as Avalon AI1 are 
commercializing this type of work.

Effective AI use does not always require new modeling techniques. Some work 
at Massachusetts General Hospital in Boston uses a large selection of images 
and combines established machine learning techniques with mature brain-image 
analysis tools to explore what is normal for a child’s developing brain (NITRC, 
2019; Ou et al., 2017). Other recent applications of AI to radiology data include 
using machine learning on electrocardiogram data to characterize types of heart 
failure (Sanchez-Martinez et al., 2018). In addition, AI can aid in reducing noise 
in real images (e.g., endoscopy) via “adversarial training.” It can smooth out 
erroneous signals in images to enhance prediction accuracy (Mahmood et al., 
2018). AI is also being applied to moving images; gait analysis has long been done 
by human observation alone, but it now can be performed with greater accuracy 
by AI that uses video and sensor data. These techniques are being used to detect 
Parkinson’s disease, to improve geriatric care, for sports rehabilitation, and in 
other areas (Prakash et al., 2018). AI can also improve video-assisted surgery, for 
example, by detecting colon polyps in real time (Urban et al., 2018)

1 See http://avalonai.mystrikingly.com.

http://avalonai.mystrikingly.com
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Learning from Practice Patterns

AI can assist in analyzing clinical practice patterns from EHR data to develop 
clinical practice models before such research can be distilled into literature or 
made widely available in clinical decision support tools. This notion of “learning 
from the crowd” stems from Condorcet’s jury theorem, which states that the 
average decisions of a crowd of unbiased experts are more correct than any 
individual’s decisions. (Think of the “jellybeans in a jar” challenge—the average 
of everyone’s guesses is surprisingly close to the true number.)

The most straightforward approach uses association rule mining to find patterns, 
but this tends to find many false associations (Wright et al., 2010). Therefore, some 
researchers have attempted to use more AI approaches such as Bayesian network 
learning and probabilistic topic modeling (Chen et al., 2017; Klann et al., 2014).

Phenotyping

A phenotype refers to an observable trait of an organism, resulting from its 
genetic code and surrounding environment, and the interactions between them. 
It is becoming increasingly popular to identify patient cohorts by trait for clinical 
and genomic research. Although EHR data are often incomplete and inaccurate, 
they do convey enough information for constructing clinically relevant sets of 
observable characteristics that define a disease, or a phenotype.

EHR phenotyping uses the information in a patient’s health records to infer 
the presence of a disease (or lack thereof). This is done by using algorithms that 
apply predetermined rules, machine learning, and statistical methods to derive 
phenotypes.

Rule-based phenotyping is time-consuming and expensive, and so applying 
machine learning methods to EHR data makes sense. The principal mechanism 
in this approach transforms raw EHR data (e.g., diagnostic codes, laboratory 
results, clinical notes) into meaningful features that can predict the presence of a 
disease. Machine learning–based solutions mine both structured and unstructured 
data stored in EHRs for phenotyping. NLP algorithms have been used in research 
to extract relevant features from EHRs. For example, Yu et al. (2015, 2017) used 
NLP to identify candidate clinical features from a pool of comprehensive medical 
concepts found in publicly available online knowledge sources.

When the set of features is extracted, different classification algorithms can be 
used to predict or classify the phenotype. Choice of the classification algorithm 
in supervised learning relies on the characteristics of the data on which the 
algorithm will be trained and tested. Feature selection and curation of gold-
standard training sets includes two rate-limiting factors. Curating annotated 
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datasets to train supervised algorithms requires involvement from domain experts, 
which hampers generalizability and scalability of phenotyping algorithms. As a 
result, the classification algorithms for phenotyping research has been limited so 
far to regularized algorithms that can address overfitting, which is what happens 
when an algorithm that uses many features is trained on small training sets.

Regularized classifiers penalize more features in favor of model parsimony. To 
overcome this limitation, new research is investigating the application of hybrid 
approaches (known as semi-supervised) to create semi-automatically annotated 
training sets and the use of unsupervised methods to scale up EHR phenotyping. 
The massive amounts of data in EHRs, if processed through deep neural networks, 
may soon permit the computation of phenotypes from a wider vector of features.

As mentioned previously, large national initiatives are now combining biobanks 
of genomic information with these phenotypes. For example, eMerge frequently 
uses genomic analyses such as genome-wide association studies in combination 
with phenotyping algorithms to define the gold-standard cohort or to study 
genetic risk factors in the phenotyped population (Gottesman et al., 2013; 
McCarty et al., 2011).

Drug Discover y

Machine learning has the capacity to make drug discovery faster, cheaper, and 
more effective. Drug designers frequently apply machine learning techniques 
to extract chemical information from large compound databases and to design 
drugs with important biological properties. Machine learning can also improve 
drug discovery by permitting a more comprehensive assessment of cellular 
systems and potential drug effects. With the emergence of large chemical datasets 
in recent years, machine and deep learning methods have been used in many 
areas (Baskin et al., 2016; Chen et al., 2018; Lima et al., 2016; Zitnik et al., 2018). 
These include

• predicting synthesis,
•  biological activity of new ligands,
•  drug selectivity,
•  pharmacokinetic and toxicological profiles,
•  modeling polypharmacy side effects (due to drug–drug interactions), and
•  designing de novo molecular structures and structure-activity models.

Large chemical databases have made drug discovery faster and cheaper. EHR 
databases have brought millions of patients’ lives into the universe of statistical 
learning. Research initiatives to link structured patient data with biobanks, 
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radiology images, and notes are creating a rich and robust analytical playground 
for discovering new knowledge about human disease. Deep learning and other 
new techniques are creating solutions that can operate on the scale required 
to digest these multiterabyte datasets. The accelerating pace of discovery will 
probably challenge the research pipelines that translate new knowledge back into 
practice.

KEY CONSIDERATIONS

Although it is difficult to predict the future in a field that is changing so quickly, 
we offer the following ideas about how AI will be used and considerations for 
optimizing the success of AI for health.

Augmented Intelligence

AI will change health care delivery less by replacing clinicians than by 
supporting or augmenting clinicians in their work. AI will support clinicians with 
less training in performing tasks currently relegated to specialists. It filters out 
normal or noncomplex cases so that specialists can focus on a more challenging 
case load.

AI will support humans in tasks that suffer from inattention, cause fatigue, and 
are physically difficult to perform. AI will substitute for humans by facilitating 
screening and evaluation in areas with limited access to medical expertise. Some 
AI tools, like those for self-management or population health support, will be 
useful in spite of lower accuracy.

When an AI tool assists human cognition, it will initially need to explain the 
connections it has drawn, allowing for an understanding of a pathway to effects. 
With sufficient accuracy, humans will begin to trust the AI output and will 
require less transparency and explanation. In situations where AI substitutes for 
medical expertise, the workflow should include a human in the loop to identify 
misbehavior and provide accountability (Rahwan, 2018).

Partnerships

The central focus of health care will continue to expand from health care 
delivery systems to a dispersed model that aggregates information about behavior, 
traits, and environment in addition to medical symptoms and test results.

Market forces and privacy concerns or regulations may impede data sharing 
and analysis (Roski et al., 2014). Stakeholders will need to creatively balance 
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competing demands. More national-level investments similar to the National 
Institutes of Health’s All of Us program can facilitate and accelerate these 
partnerships. More ethical and legal guidelines are needed for successful data 
sharing and analysis (see Chapters 1 and 7).

Interoperability

AI tools will continue to be developed by industry, research, government, and 
individuals. With emerging standards such as SMART on FHIR (Substitutable 
Medical Apps, Reusable Technology on Fast Healthcare Interoperability 
Resource), these tools will increasingly be implemented across platforms 
regardless of the EHR vendor, brand of phone, etc. This will most likely speed 
the adoption of AI.

Clinical Practice Guidelines

AI will probably discover associations that have not yet been detected by humans 
and make predictions that differ from prevailing knowledge and expertise. As a 
result, some currently accepted practices may be abandoned, and best practice 
guidelines will be adjusted.

If the output of AI systems is going to influence international guidelines, 
developers of the applications will require fuller and more representative datasets 
for training and testing.

Clinical Evidence and Rate of Innovation

The dissemination of innovation will occur rapidly, which on the one hand 
may advance the adoption of new scientific knowledge but on the other may 
encourage the rushed adoption of innovation without sufficient evidence.

Bias and Trust

As AI increasingly infiltrates the field of health, biases inherent in clinical 
practice will appear in the datasets used in AI models. The discovery of existing 
bias will open the door to changing practices, but it may also produce public 
disillusionment and mistrust.

Important growth areas for AI include platforms designed for and accessible by 
the people most in need of additional support. This includes older adults, people 
living with multiple comorbid conditions, and people in low-resource settings.
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INTRODUCTION

Chapter 3 highlights the vast potential for artificial intelligence (AI)-driven 
solutions to systematically improve the efficiency, efficacy, and equity of health 
and medicine. Although we optimistically look forward to this future, we address 
fears over potentially unintended (but predictable) consequences of an AI future 
in human health, with key considerations about how to recognize and mitigate 
credible risks.

This chapter reviews how hype cycles can promote interest in the short term 
but inadvertently impede progress when disillusionment sets in from unmet 
expectations as in the AI Winters discussed in Chapter 2. We further explore 
the potential harms of poorly implemented AI systems, including misleading 
models, bias, and vulnerability to adversarial actors, all of which warrant an 
intentional process for validation and monitoring. We round out this chapter 
with a discussion of the implications of technological automation to improve 
health care efficiency and access to care, even as we expect AI to redefine job roles 
and potentially exacerbate existing inequities without dedicated investments into 
human workforce development.

HYPE VERSUS HOPE

One of the greatest near-term risks in the current development of AI tools in 
medicine is not that it will cause serious unintended harm, but that it simply cannot 
meet the incredible expectations stoked by excessive hype. Indeed, so-called AI 
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technologies such as deep learning and machine learning are riding atop the utmost 
peak of inflated expectations for emerging technologies, as noted by the Gartner 
Hype Cycle, which tracks relative maturity stages for emerging technologies (Chen 
and Asch, 2017; Panetta, 2017) (see Figure 4-1). Without an appreciation for both 
the capabilities and limitations of AI technology in medicine, we will predictably 
crash into a “trough of disillusionment.” The greatest risk of all may be a backlash 
that impedes real progress toward using AI tools to improve human lives.

Over the past decade, several factors have led to increasing interest in and escalating 
hype of AI. There have been legitimate discontinuous leaps in computational 
capacity, electronic data availability (e.g., ImageNet [Russakovsky et al., 2015] and 
digitization of medical records), and perception capability (e.g., image recognition 
[Krizhevsky et al., 2017]). Just as algorithms can now automatically name the 
breed of a dog in a photo and generate a caption of a “dog catching a frisbee” 
(Vinyals et al., 2017), we are seeing automated recognition of malignant skin 
lesions (Esteva et al., 2017) and pathology specimens (Ehteshami et al., 2017). 
Such functionality is incredible but can easily lead one to mistakenly assume that 
the computer “knows” what skin cancer is and that a surgical excision is being 
considered. It is expected that an intelligent human who can recognize an object 

FIGURE 4-1 | Gartner Hype Cycle.
SOURCE: Gartner Hype Cycle HD, Gartner, Inc. 2017.
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in a photo can also naturally understand and explain the context of what they are 
seeing, but the narrow, applied AI algorithms atop the current hype cycle have 
no such general comprehension. Instead, these algorithms are each designed to 
complete specific tasks, such as answering well-formed multiple-choice questions.

With Moore’s law of exponential growth in computing power, the question 
arises whether it is reasonable to expect that machines will soon possess greater 
computational power than human brains (Saracco, 2018). This comparison may 
not even make sense with the fundamentally different architectures of computer 
processors and biological brains, because computers already can exceed human 
brains by measures of pure storage and speed (Fischetti, 2011). Does this mean that 
humans are headed toward a technological singularity (Shanahan, 2015; Vinge, 
1993) that will spawn fully autonomous AI systems that continually self-improve 
beyond the confines of human control? Roy Amara, co-founder of Institute for 
the Future, reminds us that “we tend to overestimate the effect of a technology in 
the short run and underestimate the effect in the long run” (Ridley, 2017). Among 
other reasons however, intelligence is not simply a function of computing power. 
Increasing computing speed and storage makes a better calculator, but not a better 
thinker. For the near future at least, this leaves us with fundamental design and 
concept issues in (general) AI research that have remained unresolved for decades 
(e.g., common sense, framing, abstract reasoning, creativity; Brooks, 2017).

Explicit advertising hyperbole may be one of the most direct triggers for 
unintended consequences of hype. While such promotion is important to drive 
interest and motivate progress, it can become counterproductive in excess. 
Hyperbolic marketing of AI systems that will “outthink cancer” (Brown, 2017) can 
ultimately set the field back when confronted by the hard realities in attempting to 
deliver changes in actual patient lives (Ross and Swetlitz, 2017). Modern advances 
do reflect important progress in AI software and data, but can shortsightedly 
discount the “hardware” of a health care delivery system (people, policies, and 
processes) needed to actually execute care. Limited AI systems can fail to provide 
insights to clinicians beyond what they already knew, undercutting many hopes 
for early warning systems and screening asymptomatic patients for rare diseases 
(Butterfield, 2018). Ongoing research has a tendency to promote the latest 
technology as a cure-all (Marcus, 2018), even if there is a “regression to regression” 
where well-worn methods backed by a good data source can be as, or more, useful 
than “advanced” AI methods in many applications (Razavian et al., 2015).

A combination of technical and subject domain expertise is needed to recognize 
the credible potential of AI systems and avoid the backlash that will come from 
overselling them. Yet, there is no need for pessimism if our benchmark is improving 
on the current state of human health. Algorithms and AI systems cannot provide 
“guarantees of fairness, equitability, or even veracity” (Beam and Kohane, 2018), 
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but no humans can either. The “Superhuman Human Fallacy” (Kohane, 2017) is 
to dismiss computerized systems (or humans) that do not achieve an unrealizable 
standard of perfection or improve on the best performing human. For example, 
accidents attributed to self-driving cars receive outsized media attention even 
though they occur far less frequently than accidents attributed to human-driven 
cars (Felton, 2018). Yet, the potential outsized impact of automated technologies 
reasonably makes us demand a higher standard of reliability (Stewart, 2019) even if 
the necessary degree is unclear and may even cost more lives in opportunity cost 
while awaiting perfection (Kalra and Groves, 2017). In health care, it is possible to 
determine where even imperfect AI clinical augmentation can improve care and 
reduce practice variation. For example, gaps exist now where humans commonly 
misjudge the accuracy of screening tests for rare diagnoses (Manrai et al., 2014), 
grossly overestimate patient life expectancy (Christakis and Lamont, 2000; Glare 
et al., 2003), and deliver care of widely varied intensity in the last 6 months 
of life (Barnato et al., 2007; Dartmouth Atlas Project, 2018). There is no need 
to overhype the potential of AI in medicine when there is ample opportunity 
(as reviewed in Chapter 3) to address existing issues with undesirable variability, 
crippling costs, and impaired access to quality care (DOJ and FTC, 2015).

To find opportunities for automated predictive systems, stakeholders should 
consider where important decisions hinge upon humans making predictions 
with a clear outcome (Bates et al., 2014; Kleinberg et al., 2016). Though human 
intuition is powerful, it is inevitably variable without a support system. One could 
identify scarce interventions that are known to be valuable and use AI tools to 
assist in identifying patients most likely to benefit. For example, an intensive 
outpatient care team need not attend to everyone, but can be targeted to only 
those patients that AI systems predict are at high risk of morbidity (Zulman 
et al., 2017). In addition, there are numerous opportunities to deploy AI workflow 
support to assist humans to rapidly answer or complete repetitive information 
tasks (e.g., documentation, scheduling, and other back-office administration).

HOW COULD IMPROPER AI HURT PATIENTS 
AND THE HEALTH SYSTEM?

The evolution of AI techniques applied to medical-use cases parallels better 
processing power and cheaper storage capabilities (Deo, 2015) and the exponential 
increase in health data generated from scientific and clinical systems (e.g., electronic 
health records [EHRs], picture archiving and communication systems, and -omics) 
if not directly from patients (e.g., mobile sensors and social media interactions). 
Most of the conceptual foundations for AI are not new, but the combined 
advances can finally now translate theoretical models into usable technologies. 



Potential Trade-Offs and Unintended Consequences of Artificial Intelligence  |  103

This will mark a fundamental change in the expectations for the next generation 
of physicians (Silver et al., 2018). Though there is much upside in the potential 
for the use of AI systems to improve health and health care, like all technologies, 
implementation does not come without certain risks. This section outlines some 
ways in which AI in health care may cause harm in unintended ways.

Correlation or Causation? Prediction Versus Action?

Poorly constructed or interpreted models from observational data can harm 
patients. Incredible advances in learning algorithms are now toppling world-class 
professional humans in games such as chess, go (Silver et al., 2018), poker (Brown 
and Sandholm, 2018), and even complex real-time strategy games (AlphaStar 
Team, 2019). The key distinction is that these can be reliably simulated with clear 
outcomes of success and failure. Such simulations allow algorithms to generate a 
virtually unlimited amount of data and experiments. In contrast, accurate simulations 
of novel medical care with predictable outcomes may well be impossible, meaning 
medical data collection requires high-cost, high-stakes experiments on real people. In 
addition, high-fidelity, reliably measured outcomes are not always achievable, because 
AI systems are constrained to learning from available observational health data.

The implementation of EHRs and other health information systems has 
provided scientists with rich longitudinal, multidimensional, and detailed records 
about an individual’s health data. However, these data are noisy and biased because 
they are produced for different purposes in the process of documenting care. 
Health care data scientists must be careful to apply the right types of modeling 
approaches based on the characteristics and limitations of the underlying data.

Correlation can be sufficient for diagnosing problems and predicting outcomes in 
certain cases. In most scenarios, however, patients and clinicians are not interested 
in just predicting outcomes given “usual care” or following a “natural history.” 
Often, the whole point of paying attention to health data is to intervene to change 
the expected outcomes.

Predictive models already help decision makers assess patient risk. However, 
methods that primarily learn associations between inputs and outputs can be 
unreliable, if not overtly dangerous when used for driving medical decisions 
(Schulam and Saria, 2017). There are three common reasons why this is the case. 
First, performance of association-based models tends to be susceptible to even 
minor deviations between the development and the implementation datasets. 
The learned associations may memorize dataset-specific patterns that do not 
generalize as the tool is moved to new environments where these patterns no 
longer hold (Subbaswamy et al., 2019). A common example of this phenomenon 
is shifts in provider practice with the introduction of new medical evidence, 
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technology, and epidemiology. If a tool heavily relies on a practice pattern to be 
predictive, as practice changes, the tool is no longer valid (Schulam and Saria, 
2017). Second, such algorithms cannot correct for biases due to feedback loops 
that are introduced when learning continuously over time (Schulam and Saria, 
2017). In particular, if the implementation of an AI system changes patient 
exposures, interventions, and outcomes (often as intended), it can cause data shifts 
or changes in the distribution of the data that degrade performance. Finally, it 
may be tempting to treat the proposed predictors as factors one can manipulate 
to change outcomes, but these are often misleading.

Consider, for instance, the finding discussed by Caruana et al. (2015) regarding 
risk of death among those who develop pneumonia. Their goal was to build a 
model that predicts risk of death for a hospitalized individual with pneumonia so 
that those at high risk could be treated and those at low risk could be safely sent 
home. The model applying supervised learning counterintuitively learned that 
patients who have asthma and pneumonia are less likely to die than patients who 
only have asthma. They traced the result back to an existing policy that patients 
who have asthma and pneumonia should be directly admitted to the intensive 
care unit, therefore receiving more aggressive treatment that in turn improved 
their prognosis (Cabitza et al., 2017). The health care system and research team 
noted this confounded finding, but had such a model been deployed to assess 
risk, then sicker patients might have been triaged to a lower level of care, putting 
them at greater risk. In this example, the association-based algorithm learned risk 
conditioned on the triage policy in the development dataset that persisted in the 
implementation environment. However, as providers begin to rely on these types 
of tools, practice patterns deviate (a phenomenon called practice policy shift) 
from those observed in the development data. This shift hurts the validity and 
reliability of the tool (Brown and Sandholm, 2018).

In another example, researchers observed that the time a lab value is measured 
can often be more predictive than the value itself (Agniel et al., 2018). For instance, 
the fact that a hospital test was done at 2:00 a.m. was more predictive of patient 
outcomes than the actual results of the test, because the implied emergency that 
prompted the test was at an unusual time. Similarly, a mortality prediction model 
may learn that patients visited by the chaplain have an increased risk of death 
(Chen and Altman, 2014; Choi et al., 2015).

Finally, a prostate screening test can be determined to be “protective” of near-
term mortality, not because the actual test does anything, but because patients 
who receive that screening test are those who are already fairly healthy and have 
a longer life expectancy (Agniel et al., 2018). A model based on associations 
may very well be learning about the way local clinical operations run but not 
generalize well when moving across hospitals or units with different practice 
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patterns (Schulam and Saria, 2017). More broadly, both humans and predictive 
models can fail to generalize from training to implementation environments 
because of many different types of dataset shift—shift in dataset characteristics 
over time, in practice pattern, or across populations—posing a threat to model 
reliability and the safety of downstream decisions made in practice (Subbaswamy 
and Saria, 2018). Recent works have proposed that proactive learning techniques 
are less susceptible to dataset shifts (Schulam and Saria, 2017; Subbaswamy et al., 
2019). These algorithms proactively correct for likely shifts in data.

In addition to learning a model once, an alternative approach is to update 
models over time so that they continuously adapt to local and recent data. Such 
adaptive algorithms offer constant vigilance and monitoring for changing behavior. 
However, this may exacerbate disparities when only well-resourced institutions 
can deploy the expertise to do so in an environment. In addition, regulation and 
law, as reviewed in Chapter 7, faces significant challenges in addressing approval 
and certification for continuously evolving systems.

Rule-based systems are explicitly authored by human knowledge engineers, 
encoding their understanding of an application domain into a computing inference 
engine. These are generally more explicit and interpretable in their intent, making 
these easier to audit for safety and reliability. On the other hand, they take less 
advantage of relationships that can be automatically inferred through data-driven 
models and therefore are often less accurate. Integrating domain-knowledge 
within learning-based frameworks, and combining these with methods for 
measuring and proactively eliminating bias, provides a promising path forward 
(Subbaswamy and Saria, 2018). Much of the literature on predictive modeling 
is based on black box models that memorize associations. Increases in model 
complexity can reduce both the interpretability and ability of the user to respond 
to predictions in practical ways (Obermeyer and Emanuel, 2016). As a result, 
these models are susceptible to unreliability, leading to harmful suggestions. 
Evaluating for reliability and actionability are key in developing models that have 
the potential to affect health outcomes. These issues are at the core of the tension 
between “black box” and “interpretable” model algorithms that afford end users 
some explanation for why certain predictions are favored.

Training reliable models depends on training datasets to be representative of 
the population where the model will be applied. Learning from real-world data—
where insights can be drawn from patients similar to a given index patient—has 
the benefit of leading to inferences that are more relevant, but it is important 
to characterize populations where there are inadequate data to support robust 
conclusions. For example, a tool may show acceptable performance on average 
across individuals captured within a dataset but may perform poorly for specific 
subpopulations because the algorithm has not had enough data to learn from. 



106  |  Artificial Intelligence in Health Care

In genetic testing, minority groups can be disproportionately adversely affected 
when recommendations are made based on data that do not adequately represent 
them (Manrai et al., 2016). Test-time auditing tools that can identify individuals for 
whom the model predictions are likely to be unreliable can reduce the likelihood 
of incorrect decision making due to model bias (Schulam and Saria, 2017).

Amplification or Exacerbation?

AI systems will generally make people more efficient at what they are already 
doing, whether that is good or bad. Bias is not inherently undesirable, because 
the whole point of learning from (clinical) practices is that there is an underlying 
assumption that human experts are making nonrandom decisions biased toward 
achieving desirable effects. Machine learning relying on observational data will 
generally have an amplifying effect on our existing behavior, regardless of whether 
that behavior is beneficial or only exacerbates existing societal biases. For instance, 
Google Photos, an app that uses machine learning technology to organize images, 
incorrectly identified people with darker skin tones as “gorillas,” an animal that 
has historically been used as a racial slur (Lee, 2018). Another study found that 
machine translation systems were biased against women due to the way in which 
women were described in the data used to train the system (Prates et al., 2018). 
In another example, Amazon developed a hiring algorithm based on its prior 
hiring practices, which recapitulated existing biases against women (Dastin, 2018). 
Although some of these algorithms were revised or discontinued, the underlying 
issues will continue to be significant problems, requiring constant vigilance, as 
well as algorithm surveillance and maintenance to detect and address them (see 
Chapter 6). The need for continuous assessment about the ongoing safety of systems 
is discussed in Chapter 7, including a call for significant changes in regulatory 
compliance. Societal biases reflected in health care data may be amplified as 
automated systems drive more decisions, as further addressed in Chapters 5 and 6.

AI Systems Transparency

Transparency is a key theme underlying deeper issues related to privacy and 
consent or notification for patient data use, and to potential concerns on the part 
of patients and clinicians around being subject to algorithmically driven decisions. 
Consistent progress will only be feasible if health care consumers and health care 
systems are mutually recognized as trusted data partners.

As discussed in detail in Chapter 7, there are tensions that exist between the desire 
for robust data aggregation to facilitate the development and validation of novel 
AI models and the need to protect consumer privacy as well as demonstrate respect 
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for consumer preferences through informed consent or notification procedures. 
However, lack of transparency about data use and privacy practices runs the risk 
of fostering a situation that lacks clear consent when patient data are used in ways 
that patients do not understand, realize, or accept. Current consent practices for 
the use of EHRs and claims data are generally based on models focused on the 
Health Insurance Portability and Accountability Act (HIPAA) privacy rules, and 
some argue that HIPAA needs updating (Cohen and Mello, 2018). The progressive 
integration of other sources of patient-related data (e.g., genetic information, 
social determinants of health) and the facilitated access to highly granular and 
multidimensional data are changing the protections provided by the traditional 
mechanisms. For instance, with more data available, reidentification becomes easier 
to perform (Cohen and Mello, 2019). As discussed further in Chapter 7, regulations 
need to be updated and consent processes will need to be more informative of 
those added risks. Educating patients about the value of having their data used to 
help advance science and care, but also being explicit about the potential risks of 
data misuse or unintended negative effects is crucial.

In addition to issues related to data use transparency, peer and community review 
of publications that describe AI tools, with dissemination of code and source 
data, is necessary to support scientific reproducibility and validation. The risks of 
“stealth research” (Ioannidis, 2015), where claims regarding important, high-stakes 
medical advancements are made outside of the peer-reviewed scientific literature, 
are too great. While there will be claims of commercial concerns for proprietary 
intellectual property and even controversial concerns over “research parasites” 
(Longo and Drazen, 2016), some minimal level of transparency must be expected. 
Before clinical acceptance of systems can be expected, peer-reviewed publication 
of model performance and sources of training data should be expected just as 
much as population descriptions in randomized controlled trials. This is necessary 
to clarify the representativeness of any models and what populations to which 
they can reasonably be expected to apply.

For review of AI model development and validation, different models of 
accountability can be considered, such as the development of review agencies for 
automated AI and other systems in medicine. If not through existing structures 
such as the U.S. Food and Drug Administration (FDA) or Clinical Laboratory 
Improvement Amendments (CLIA), these can be modeled after the National 
Transportation Safety Board. In the latter case, such an agency has no direct 
enforcement authority, but in the event of any adverse event that could harm 
people, full disclosure of all data and information to the review board is required 
to ensure that the community can learn from mistakes. Refer to Chapter 7 for 
additional reading related to current and necessary policies and regulations in the 
use of AI systems in health care.
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Cybersecurity Vulnerabilities Due to AI Automation

Vulnerabilities

Most of this chapter focuses on the side effects of nonmalicious actors using 
ethically neutral AI technology. Chapter 1 discusses some of the challenges in 
the ethical uses of health care AI tools. However, it is also important to consider 
how increasing automation opens new risks for bad actors to directly induce 
harm, such as through overt fraud. E-mail gave us new ways to communicate and 
increased productivity, but it also enabled new forms of fraud through spam and 
phishing. Likewise, new health care technology may open up new streams for fraud 
and abuse. After the widespread adoption of digital health records, data breaches 
resulting in the release of millions of individuals’ private medical information 
have become commonplace (Patil and Seshadri, 2014). These breaches will 
likely increase in an era when our demand for health data exceeds its supply in 
the public sector (Jiang and Bai, 2019; Perakslis, 2014). Health care systems are 
increasingly vigilant, but ongoing attacks demonstrate that safeguarding against 
a quickly evolving threat landscape remains exceedingly difficult (Ehrenfeld, 
2017). The risk to personal data safety will continue to increase as AI becomes 
mainstream and commercialized. Engaging the public on how and when their 
secondary data are being used will be crucial to preventing public backlash as 
we have seen with the Facebook–Cambridge Analytica data scandal (Cadwalladr 
and Graham-Harrison, 2018). A recent study also indicates that hospital size 
and academic environment could be associated with increased risk for breaches, 
calling for better data breach statistics (Fabbri et al., 2017).

Health care data will not be the only target for attackers; the AI systems themselves 
will become the subject of assault and manipulation. FDA has already approved 
several AI systems for clinical use, some of which can operate without the oversight 
of a physician. In parallel, the health care economy in the United States is projected 
to represent 20 percent of the gross domestic product by 2025 (Papanicolas et al., 
2018), making automated medical AI systems a natural target for manipulation as 
they drive decisions that move billions of dollars through the health care system.

Though recent advances in AI have made impressive progress on clinical tasks, 
the fact remains that these systems as currently conceived are exceptionally brittle, 
making them easy to mislead and manipulate with seemingly slight variations 
in input. Medical images that have small but intentionally crafted modifications 
(imperceptible to the human eye) can be used to create error in the diagnoses that 
an AI system provides (Finlayson et al., 2018, 2019). Such attacks allow the attacker 
to exert arbitrary control over the AI model by modifying the input provided to 
the system. Figure 4-2 demonstrates how such an attack may be carried out.
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These kinds of attacks can give potential adversaries an opportunity to 
manipulate the health care system. For instance, suppose that AI has become 
ubiquitous in the health care system and payers require that an AI system evaluate 
and confirm an imaging-based diagnosis before a reimbursement is granted. Under 
such a system, a motivated provider could be incentivized to modify “borderline” 
cases to allow them to perform a procedure in pursuit of reimbursement. These 
kinds of attacks could be conducted on a larger scale where similar large financial 
gains are at stake. Consider that clinical trials that are based on imaging endpoints 
(e.g., tumor burden in X-rays) will likely be evaluated by AI systems in the future 
to ensure “objectivity.” Any entity could intentionally ensure a positive result by 
making small and untraceable adversarial changes to the image, which would 
cause the AI system to think that tumor burden had been reduced. It is unlikely 
that the hypothetical scenarios discussed above will happen in the near term, but 
they are presented as cautionary examples to encourage a proactive dialogue and 
to highlight limitations of current AI technology.

Adversarial Defenses

There are roughly two broad classes of possible defenses: infrastructural and 
algorithmic (Qiu et al., 2019; Yuan et al., 2018). Infrastructural defenses prevent 
image tampering or detect if it has occurred. For instance, an image hash, also 

FIGURE 4-2 | Construction of an “adversarial example.” Left: An unaltered fundus image 
of a healthy retina. The AI system (bottom left) correctly identifies it as a healthy eye. Middle: 
Adversarial “noise” that is constructed with knowledge of the AI system is added to the orig-
inal image. Right: Resulting adversarial image that superimposes the original image and the 
adversarial noise. Though the original image is indistinguishable from the adversarial example 
to human eyes, the AI system has now changed the diagnosis to diabetic retinopathy with 
essentially 100 percent confidence.
SOURCE: Image was provided by Samuel Finlayson.
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known as a “digital fingerprint,” could be generated and stored by the device as 
soon as an image is created. The hash would then be used to determine if the 
image had been altered in any way, because any modification would result in 
a new hash. This would require an update to hospital information technology 
(IT) infrastructure, which has historically been very difficult. However, a set of 
standards similar to ones for laboratories such as CLIA could be established to 
ensure that the medical imaging pipeline is secure.

Algorithmic defenses against adversarial attacks are a very active area of 
research within the broader machine learning community (Qiu et al., 2019; Yuan 
et al., 2018). As of yet, there are no defenses that have proven to be 100 percent 
effective, and new defenses are often broken almost as quickly as they are proposed. 
However, there have been successful defenses in specific domains or on specific 
datasets. On the handwritten digit dataset known as MNIST, several approaches 
have proven to be robust to adversarial attacks while retaining high levels of 
predictive accuracy (Kannan et al., 2018; Madry et al., 2017). It remains to be 
seen if some specific property of medical imaging (such as low levels of pose 
variance or restricted color spectrum) could be leveraged to improve robustness 
to adversarial attacks, but this is likely a fruitful direction for research in this area.

Both types of defenses, infrastructural and algorithmic, highlight the need for 
interdisciplinary teams of computer scientists, health care workers, and consumer 
representatives at every stage of design and implementation of these systems. 
Because these AI systems represent a new type of IT infrastructure, they must 
be treated as such and continually probed for possible security vulnerabilities. 
This will necessarily require deep collaborations between health care IT experts, 
computer scientists, the traditional health care workforce, and those the algorithm 
is designed to affect.

HOW COULD AI RESHAPE MEDICINE AND  
HEALTH IN UNINTENDED WAYS?

The examples in this chapter largely revolve around clinical cases and 
risks, but the implications reach far beyond to all of the application domains 
explored in Chapter 3. Public health, consumer health, and population health 
and/or risk management applications and risks are all foreseeable. Operational 
and administrative cases may be more viable early target areas with much more 
forgiving risk profiles for unintended harm, without high-stakes medical decisions 
depending on them. Even then, automated AI systems will have far-reaching 
implications for patient populations, health systems, and the workforce in terms of 
the efficiency and equity of delivering against the unmet and unlimited demands 
for health care.
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Future of Employment and Displacement

“It’s just completely obvious that in five years deep learning is going to do better 
than radiologists. It might be 10 years,” according to Geoffrey Hinton, a pioneer 
in artificial neural network research (Mukherjee, 2017). How should health 
care systems respond to the statement by Sun Microsystems co-founder Vinod 
Khosla that “Machines will replace 80 percent of doctors in a health care future 
that will be driven by entrepreneurs, not medical professionals” (Clark, 2012)? 
With the advancing capabilities of AI, and a history of prior large-scale workforce 
disruptions through technology advances, it seems reasonable to posit that 
entire job categories may be replaced by automation (see Figure 4-3), including 
some of the most common (e.g., retail clerks and drivers) (Desjardins, 2017; 
Frey and Osborne, 2013).

Are job losses in medicine a credible consequence of advancing AI? In 1968, 
Warner Slack commented that “any doctor that can be replaced by a machine 
should be replaced by a machine” (deBronkart and Sands, 2018). This sentiment is 
often misinterpreted as an argument for replacing people with computer systems, 
when it is meant to emphasize the value a good human adds that a computer 
system does not. If one’s job is restricted to relaying information and answering 
well-structured, verifiable multiple-choice questions, then it is likely those tasks 
should be automated and the job eliminated. Most clinical jobs and patient needs 
require much more cognitive adaptability, problem solving, and communication 
skills than a computer can muster. Anxiety over job losses due to AI and automation 
are likely exaggerated, but advancing technology will almost certainly change 
roles as certain tasks are automated. A conceivable future could eliminate manual 
tasks such as checking patient vital signs (especially with self-monitoring devices), 
collecting laboratory specimens, preparing medications for pickup, transcribing 
clinical documentation, completing prior authorization forms, scheduling 
appointments, collecting standard history elements, and making routine diagnoses. 
Rather than eliminate jobs, however, industrialization and technology typically 
yield net productivity gains to society, with increased labor demands elsewhere 
such as in software, technical, support, and related services work. Even within the 
same job category, many assumed automated teller machines would eliminate 
the need for bank tellers. Instead, the efficiencies gained enabled expansion of 
branches and even greater demand for tellers that could focus on higher cognitive 
tasks (e.g., interacting with customers, rather than simply counting money) 
(Pethokoukis, 2016). Health care is already the fastest growing and now largest 
employment sector in the nation (outstripping retail), but most of that growth is 
not in clinical professionals such as doctors and nurses, but rather in home care 
support and administrative staff (Thompson, 2018).
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Filling the Gap for Human Expertise, 
the Scarcest Health Care Resource

Besides using AI automation to tackle obvious targets such as repetitive 
administrative tasks (clinical documentation, scheduling, etc.), more important is 
to consider the most valuable and limited resource in medicine, which is access 
to and time with a competent professional clinician. More than 25 million 
people in the United States alone have deficient access to medical specialty care 
(Woolhandler and Himmelstein, 2017). For everyone to receive levels of medical 
care that the insured metropolitan populations do, we already lack >30,000 doctors 
in the United States to meet that demand. With growing and aging populations, 
the demand for physicians continually outpaces supply, with shortfalls projected 
to be as much as 100,000 physicians in the United States alone by 2030 (Markit, 
2017) (see Figure 4-4). The scarcity of available expertise runs even deeper in 
international and rural settings, where populations may not be able to reach even 
basic health care without prolonged travel. This pent-up and escalating demand 
for health care services should direct advances in telemedicine and AI automation 
to ultimately increase access and fill these shortfalls. At the same time, we should 
not feel satisfied with broad dissemination of lower quality services that may only 
widen inequity between affluent urban centers with ready access to multiple tiers 
of service and remote rural populations with more limited choices.

Instead of trying to replace medical workers, the coming era of AI automation 
can instead be directed toward enabling a broader reach of the workforce to do 
more good for more people, given a constrained set of scarce resources.

Net Gains, Unequal Pains

Even with the optimistic perspective that increasing automation through AI 
technology will be net beneficial in the end, the intervening processes of displacement 
can be painful, disruptive, and can widen existing inequality (Acemoglu and Restrepo, 
2018). Automation reflects a movement of production from labor to capital. This 
tends to mean unequal distribution of benefits, as productivity starts coming from 
those holding the capital while the labor force (wage workers) is progressively 
constrained into a narrower set of tasks, not sharing as much in the control or growth 
in overall income (Acemoglu and Restrepo, 2018).

Everyone is enriched when something needed (e.g., food or medical care) becomes 
less expensive to produce through automation (Herrendorf et al., 2009). The 
response to such technological shocks can be slow and painful, however, with costly 
reallocation and retraining of workers. This can be particularly challenging when 
there is a mismatch between new technology and workforce skills. Such disruptive 
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changes tend to be harder on small (usually under-represented) groups who are 
already on the margins, amplifying existing inequity. Those who can adapt well to 
different economies and structures are likely those who already have better resources, 
education, and socioeconomic stability. Advances in health care AI technologies may 
well create more jobs (e.g., software development, health care system analysts) than are 
eliminated (e.g., data entry, scribing, scheduling), but those in the jobs that are easy to 
automate are unlikely to be the ones able to easily adopt the skills needed for the new 
jobs created. The fallout from a growing mismatch between employer skill set demand 
and employee training are reflected with only one in four employees feeling that they 
are getting training to adapt to an AI tech world (Giacomelli and Shukla, 2018).

Although the above example is on the individual worker level, even at the 
system level, we are likely to see increasing disparities. Well-resourced academic 
medical centers may be in a position to build and deploy adaptive learning 
AI systems, whereas smaller health care systems that care for the majority of the 
population are unlikely to have the resources to assemble the on-site expertise 
and data infrastructure needed for more than out-of-the-box systems that are 
subject to all of the modeling risks previously discussed.

While it is important to measure total and average improvement in human 
outcomes, it is equally important to also measure equitable distribution of such 

FIGURE 4-4 | Projected total physician shortfall range, 2015–2030.
SOURCE: LaPointe, 2017.
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benefits (e.g., Gini index [Gastwirth, 1972]). By analogy to a “food apartheid,” 
if we only optimize for production of total calories per acre (Haspel, 2015), 
all can get fatter with more empty calories, but the poor are less likely to access 
actual nutrition (Brones, 2018). If high-tech health care is only available and used 
by those already plugged in socioeconomically, such advances may inadvertently 
reinforce a “health care apartheid” (Thadaney and Verghese, 2019).

New Roles in an AI Future

Prior advances in technology and automation have resulted in transitions of jobs 
from agricultural to manufacturing to service. Where will medical workers go when 
even service jobs are automated? Most of the near-term changes discussed are largely 
applied AI in terms of data analytics for prediction, decision making, logistics, and 
pattern recognition. These remain unlikely to displace many human skills such as 
complex reasoning, judgment, analogy-based learning, abstract problem solving, 
physical interactions, empathy, communication, counseling, and implicit observation. 
There will thus likely be a shift in health care toward jobs that require direct physical 
(human) interaction, which are not so easily automated. The advent of the AI era 
will even require the creation of new job roles (Wilson et al., 2017), including

• Trainers: Teaching AI systems how to perform will require deliberate effort 
to evaluate and stress test them. AI systems can automate tasks and find patterns 
in data, but still require humans to provide meaning, purpose, and direction.

•  Explainers: Advancing AI algorithms often have a “black box” nature, making 
suggestions without clear explanations, requiring humans versed in both the 
technical and application domains to explain how such algorithms can be 
trusted to drive practical decisions.

•  Sustainers: The intelligence needs of human endeavors will continually evolve, 
preventing the advent of “completed” AI systems. Humans must continue to 
maintain, interpret, and monitor the behavior and unintended consequences 
of AI systems.

Deskilling of the Health Care Workforce

Even if health-related jobs are not replaced by AI, deskilling (“skill rot”) is a risk 
of over-reliance on computer-based systems (Cabitza et al., 2017). While clinicians 
may not be totally displaced, the fear is that they may lose “core competencies” 
considered vital to medical practice. In light of the rapid advancements of AI 
capabilities in reading X-rays (Beam and Kohane, 2016; Gulshan et al., 2016), 
will radiologists of the future be able to perform this task without the aid of 
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a computer? The very notion of a core competency is an evolving one that 
professionals will need to adapt as technology changes roles (Jha and Topol, 2016).

As the skills needed in imaging-based specialties change rapidly, radiologists 
and pathologists “must be willing to be displaced to avoid being replaced” (Jha 
and Topol, 2016). Jha and Topol (2016) articulate a future in which physicians 
in these specialties no longer operate as image readers as they currently do, but 
have evolved to be “information specialists” that manage complex AI systems 
and integrate the various pieces of information they might provide. Indeed, they 
argue that radiology and pathology will be affected by AI in such a similar manner 
that these specialties might be merged under the unified banner of information 
specialists, to more accurately reflect the skills needed by these physicians in the 
AI-enabled future. While this may be extreme due to the significantly different 
clinical information required in the two disciplines, it highlights that this era of 
health care is likely to be substantially disrupted and transformed.

Need for Education and Workforce Development

Advancing technologies in health care can bring substantial societal benefits, 
but will require significant training or retraining of the workforce for roles that 
emphasize where humans and machines have different strengths. The Industrial 
Revolution illustrated the paradox of overall technological advance and productivity 
growth, which first passed through a period of stagnated wages, reduced share 
to laborers, expanding poverty, and harsh living conditions (Mokyr, 1990). An 
overall beneficial shift only occurred after mass schooling and other investments 
in human capital to expand skills of the workforce. Such adjustments are impeded 
if the educational system is not able to provide the newly relevant skills.

A graceful transition into the AI era of health care that minimizes the 
unintended consequences of displacement will require deliberate redesign of 
training programs. This ranges from support for a core basis of primary education 
in science, technology, engineering, and math literacy in the broader population 
to continuing professional education in the face of a changing environment. 
Any professional’s job changes over time as technology and systems evolve. 
While complete replacement of health-related jobs by AI computer systems 
is unlikely, a lack of adaptation will result in a growing skill set mismatch, 
decreases in efficiency, and increasing cost of care delivery. In the face of the 
escalating complexity in medicine and computerization of data, medical 
training institutions already acknowledge that emphasizing rote memorization 
and repetition of information is suboptimal in an information age, requiring 
large-scale transformation. Health care workers in the AI future will need to 
learn how to use and interact with information systems, with foundational 
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education in information retrieval and synthesis, statistics and evidence-based 
medicine appraisal, and interpretation of predictive models in terms of diagnostic 
performance measures. Institutional organizations (e.g., the National Institutes of 
Health, health care systems, professional organizations, universities, and medical 
schools) should shift focus from skills that are easily replaced by AI automation 
to specific education and workforce development programs for work in the AI 
future with emphasis in science, technology, engineering, and medicine and data 
science skills and human skills that are hard to replace with a computer. Along 
with the retraining required to effectively integrate AI with existing roles, new 
roles will be created as well (e.g., trainers, explainers, sustainers), creating the need 
to develop and implement training programs to address these roles.

Moravec’s paradox notes that “it is comparatively easy to make computers 
exhibit adult level performance on intelligence tests or playing checkers, and 
difficult or impossible to give them the skills of a one-year-old when it comes 
to perception and mobility” (Moravec, 2018). Respectively, clinicians will need 
to be selected for, and emphasize training in, more distinctly “human” skills of 
counseling, physical examination, communication, management, and coordination.

AI System Augmentation of Human Tasks

Anxieties over the potential for automated AI systems to replace jobs rests in a 
false dichotomy. Humans and machines can excel in distinct ways that the other 
cannot, meaning that the two combined can accomplish what neither could do 
alone. In one example of a deep learning algorithm versus an expert pathologist 
identifying metastatic breast cancer, the high accuracy of the algorithm was 
impressive enough, but more compelling was that combining the algorithm with 
the human expert outperformed both (Wang et al., 2016).

HOW WILL AI TRANSFORM PATIENT, PROVIDER, 
AND COMPUTER INTERACTIONS?

The progressive digitization of U.S. medicine underwent a massive shift in 
just the last decade with the rapid adoption of EHRs spurred by the Health 
Information Technology for Economic and Clinical Health (HITECH) Act of 
2009 (HHS, 2017). This transformation creates much of the digital infrastructure 
that will make AI in medicine possible, but the pace of change was so rapid that we 
may not have yet achieved the maturity to effectively benefit from new technology 
without compromising core values of the profession. Advancing AI systems will 
depend on massive data streams for their power, but even relatively basic billing 
processes, quality reporting, and business analytics that current EHRs support is 
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burning out a generation of clinical professionals because of increased electronic 
workflow requirements (Downing et al., 2018; Hill et al., 2013; Verghese, 2018).

As AI medical guidance systems driven by automated sensors increasingly 
direct medical care, there is concern that a result will be greater separation of 
patients from clinicians by digital intermediaries (Gawande, 2018). The future 
may see patients asking for advice and receiving direction from automated 
chatbots (Miner et al., 2016, 2017) while doctors and patients attentively analyze 
and recommend treatments for “iPatient” avatars that represent the data of their 
patients but are not the physical human beings (Verghese, 2008).

WHAT WILL HAPPEN TO ACCEPTANCE, TRUST, AND 
LIABILIT Y IN A HUMAN AND MACHINE AI FUTURE?

Information retrieval systems will increase democratization of medical 
knowledge, likely to the point where fully automated systems, chatbots, or 
intelligent agents are able to triage and dispense information and give health 
advice to patients (Olson, 2018). Less clear is how this disrupts conventions of 
who and what to trust. Widespread distribution of information comes with a 
respective risk of circulating misinformation in digital filter bubbles and echo 
chambers (Cashin-Garbutt, 2017).

Who is sued when something goes wrong, but all there is to point at is a 
faceless automation backed by a nebulous bureaucracy? Regulatory and guidance 
frameworks (see Chapter 7) must adapt, or leave us in an ethically ambiguous 
space (Victory, 2018).

HOW WILL HEALTH CARE PROVIDER  
ROLES BE CONCEPTUALIZED?

The classical ideal of a clinician evokes an image of a professional laying his 
or her stethoscope on patients for skillful examination, fulfilling a bonding and 
healing role. The gap between this image and reality may only widen further with 
advancing AI technology in medicine. The patient’s ability to tell his or her story 
to a live person could change in a world with voice-recognition software and 
AI chatbots. This may actually allow patients to be more honest in their medical 
interactions (Borzykowski, 2016), but could diminish one of the most effective 
therapeutic interventions, that of simply feeling that you are being listened to 
by an attentive and empathetic human being. In an AI-enabled world, the role 
of clinician will likely move progressively toward manager, coordinator, and 
counselor, challenging the classical perception of what their role is and what 
should be counted among one’s core competencies. Digitization of medicine is 
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intended to improve care delivery, particularly at the population level, but these 
benefits may not be felt on the frontlines of care. Instead, it can turn clinical 
professionals into data entry clerks, feeding data-hungry machines (optimized 
for billing incentives rather than clinical care). This may escalate as AI tools 
need even more data, amid a policy climate imposing ever more documentation 
requirements to evaluate and monitor metrics of health care quality.

The transition to more IT solutions, computerized data collection, and 
algorithmic feedback should ultimately improve the consistency of patient 
care quality and efficiency. However, will the measurable gains necessarily 
outweigh the loss of harder-to-quantify human qualities of medicine? Will it 
lead to different types of medical errors when health care relies on technology-
driven test interpretations and care recommendations instead of human clinical 
assessment, interpretation, and management? These are provocative questions, but 
acknowledging that these are public concerns and addressing them are important 
from a societal perspective.

More optimistically, perhaps such advancing AI technologies can instead 
enhance human relationships. Multiple companies are exploring remote and 
automating approaches to “auto-scribe” for clinical encounters (Cashin-Garbutt, 
2017), allowing patient interactions to focus on direct care instead of note-
taking and data entry. Though such promise is tantalizing, it is also important 
to be aware of the unintended consequences or overt actions of bad actors who 
could exploit such passive monitoring, intruding on confidential physician–
patient conversations that could make either party unwilling to discuss important 
issues. Health care AI developments may be better suited in the near term to 
back-office administrative tasks (e.g., coding, prior authorization, supply chain 
management, and scheduling). Rather than developing patches like scribes for 
mundane administrative tasks, a holistic system redesign may be needed to reorient 
incentives and eliminate the need for low-value tasks altogether. Otherwise, AI 
systems may just efficiently automate low-value tasks, further entrenching those 
tasks in the culture, rather than facilitating their elimination.

WHY SHOULD THIS TIME BE ANY DIFFERENT?

A special article in the New England Journal of Medicine proclaimed that

Rapid advances in the information sciences, coupled with the political 
commitment to broad extensions of health care, promise to bring about basic 
changes in the structure of medical practice. Computing science will probably 
exert its major effects by augmenting and, in some cases, largely replacing the 
intellectual functions of the physician. (Schwartz, 1970)
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This was published in 1970. Will excitement over the current wave of AI 
technology only trigger the next AI Winter? Why should this time be any different? 
General AI systems will remain elusive for the foreseeable future, but there are credible 
reasons to expect that narrow, applied AI systems will still transform many areas of 
medicine and health in the next decade. Although many foundational concepts for 
AI systems were developed decades ago, only now is there availability of the key 
ingredient: data. Digitization of medical records, aggregated Internet crowdsourcing, 
and patient-generated data streams provide the critical fuel to power modern AI 
systems. Even in the unlikely event that no further major technological breakthroughs 
follow, the coming decades will be busy translating existing technological advances 
(e.g., image recognition, machine translation, voice recognition, predictive modeling) 
into practical solutions for increasingly complex problems in health.

KEY CONSIDERATIONS

Though this chapter is meant to highlight potential risks and unintended 
consequences of the developing AI future of medicine, it should not be read as 
pessimism or discouragement of progress. Complexity and challenges in health 
care are only escalating (IOM, 2013) as is global competition in AI technology 
(Metz, 2019). “If we don’t change direction soon, we’ll end up where we’re going” 
(Horne, 2016). Doing nothing has its own risks and costs in terms of missed 
opportunities. Leaders can integrate the key considerations outlined below to 
develop strategies and thinking around effective use of AI.

Viewed through a medical ethics framework (Gillon, 1994), these considerations 
are guided by four principles:

• Beneficence: Use AI systems to do good and consider that it would even be 
a harmful missed opportunity to neglect their use.

•  Non-maleficence: Avoid unintentional harm from misinterpreting poorly 
constructed models or the overt actions of bad actors.

•  Autonomy: Respect individual decisions and participation, including as they 
pertain to transparency in personal data collection and the applicability of 
AI-driven decisions.

•  Justice: Act on the basis of fair adjudication between competing claims, so 
that AI systems can help reduce rather than exacerbate existing disparities in 
access to quality health resources.

The review in this chapter seeks to soften any crash into a trough of disillusionment 
over the unintended consequences of health care AI, so that we may quickly move 
on to the slope of enlightenment that follows the hype cycle (Chen and Asch, 
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2017; see Figure 4-1) where we effectively use all information and data sources to 
improve our collective health. To that end are the following considerations:

1.  Beware of marketing hype, but recognize real opportunities. There 
is no need to over-hype the potential of AI in health care when there is 
ample opportunity (as reviewed in Chapter 3) to address existing issues from 
undesirable variability, to crippling costs, to impaired access to quality care.

2.  Seek out robust evaluations of model performance, utility, vulnerabilities, 
and bias. Developers must carefully probe models for unreliable behavior due 
to shifts in population, practice patterns, or other characteristics that do not 
generalize from the development to the deployment environment. Even within 
a contained deployment environment, it is important to measure robustness of 
machine learning approaches relative to shifts in the real-world, data-generating 
processes and sustain efforts to address the underlying human practices and 
culture from which the algorithms are learning.

3.  Respective effort should be deliberately allocated to identify, mitigate, 
and correct biases in decision-making tools. Computers/algorithms 
are effective at learning statistical structure, patterns, organization, and rules in 
complex data sources, but they do not offer meaning, purpose, or a sense of 
justice or fairness. Recognize that algorithms trained on biased datasets will likely 
just amplify those biases (Rajkomar et al., 2018; Zou and Schiebinger, 2018).

4.  Demand transparency in data collection and algorithm evaluation 
processes. The trade-offs between innovation and safety and between 
progress and regulation are complex, but transparency should be demanded 
along the way, as more thoroughly explored in Chapter 7.

5.  Develop AI systems with adversaries (bad actors) in mind. Take 
inspiration from the cybersecurity industry with arms races between “white 
hats” versus “black hats.” Deep collaborations between “white hat” health care 
IT experts, computer scientists, and the traditional health care workforce are 
needed to sniff out system vulnerabilities and fortify them before the “black hat” 
bad actors identify and exploit vulnerabilities in live systems (Symantec, 2019).

6.  Prioritize education reform and workforce development. A graceful 
transition into the AI era of medicine that minimizes displacement will require 
deliberate redesign of training programs and workforce development toward 
roles that emphasize where humans have different strengths than computers.

7.  Identify synergy rather than replacement. Humans and machines can 
excel in distinct ways that the other cannot, meaning that the two combined 
can accomplish what neither could do alone. Rather than replacement, 
consider applications where there is limited access to a scarce resource 
(e.g., clinical expertise) that AI systems can relieve.
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8.  Use AI systems to engage, rather than stifle, uniquely human 
abilities. AI-based automation of mundane administrative tasks and efficient 
health-related operations can improve system efficiency to give more time for 
human patients and clinicians to do what they are better at (e.g., relationship 
building, information elicitation, counseling, and management). As explored 
in Chapter 6, avoid systems that disrupt human workflows.

9.  Use automated systems to reach patients where existing health 
systems do not. Even as there is unique value in an in-person clinician–
patient interaction, more than 90 percent of a patient’s life will not be in a 
hospital or doctor’s office. Automated systems and remote care frameworks 
(e.g., telemedicine and self-monitoring) can attend to, guide, and build 
patient relationships to monitor chronic health issues, meeting many who 
were previously not engaged at all.
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INTRODUCTION

This chapter provides an overview of current best practices in model 
development and validation. It gives readers a high-level perspective of the key 
components of development and validation of artificial intelligence (AI) solutions 
in the health care domain but should not be considered exhaustive. The concepts 
discussed here apply to the development and validation of an algorithmic agent 
(or, plainly, an algorithm) that is used to diagnose, prognose, or recommend actions 
for preventive care as well as patient care in outpatient and inpatient settings.

Overall, Chapters 5, 6, and 7 represent the process of use case and needs 
assessment, conceptualization, design, development, validation, implementation, 
and maintenance within the framework of regulatory and legislative requirements. 
Each of these chapters engages readers from a different perspective within the 
ecosystem of AI tool development, with specific considerations from each lens 
(see Figure 1-6 in Chapter 1).

A complete evaluation of an AI solution in health care requires an assessment 
of utility, feasibility given available data, implementation costs, deployment 
challenges, clinical uptake, and maintenance over time. This chapter focuses on 
the process necessary to develop and validate a model, and Chapter 6 covers the 
issues of implementation, clinical use, and maintenance.

This chapter focuses on how to identify tasks that can be completed or 
augmented by AI, on challenges in developing and validating AI models for health 
care, and on how to develop AI models that can be deployed. First, all stakeholders 
must understand the needs coming from clinical practice, so that proposed AI 
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systems address the needs of health care delivery. Second, it is necessary that such 
models be developed and validated through a team effort involving AI experts and 
health care providers. Throughout the process, it is important to be mindful of the 
fact that the datasets used to train AI are heterogeneous, complex, and nuanced 
in ways that are often subtle and institution specific. This affects how AI tools 
are monitored for safety and reliability, and how they are adapted for different 
locations and over time. Third, before deployment at the point of care, AI systems 
should be rigorously evaluated to ensure their competency and safety, in a process 
similar to that done for drugs, medical devices, and other interventions.

Il lustrative Use Case

Consider the case of Vera, a 60-year-old woman of Asian descent with a 
history of hypertension, osteoporosis, diabetes, and chronic obstructive 
pulmonary disease, entering the doctor’s office with symptoms of shortness of 
breath and palpitations. Her primary care physician must diagnose and treat 
the acute illness, but also manage the risks associated with her chronic diseases. 
Ideally, decisions regarding if to treat are guided by risk stratification tools, and 
decisions of how to treat are guided by evidence-based guidelines. However, 
such recommendations are frequently applied to patients not represented in the 
data used in those recommendations’ development. For example, best practices 
to manage blood pressure come from randomized controlled trials enrolling 
highly homogeneous populations (Cushman et al., 2016), and methods for risk 
stratification (e.g., assessment via the atherosclerotic cardiovascular disease risk 
equation) frequently do not generalize well to diverse populations (Yadlowsky 
et al., 2018). Moreover, there are care delivery gaps from clinical inertia, provider 
familiarity with treatments, and patient preferences that result in the lack of 
management or under-treatment of many conditions.

Vera’s experience would improve if an automated algorithm could support 
health care teams to accurately (1) classify and precisely recognize existing 
conditions (accounting for her age, race, and genetic makeup more broadly), 
(2) predict risks of specific events (e.g., 1-year risk of stroke) given the broad 
context (e.g., comorbidities such as osteoporosis) and not just the current 
symptoms, and (3) recommend specific interventions.

Even for well-understood clinical situations, such as the monitoring of surgical 
site infections, current care delivery falls woefully short. For example, the use of 
automated text-processing and subsequent reasoning on both the text-derived 
content as well as other structured data in the electronic health record (EHR) 
resulted in better tools for monitoring surgical site infections in real time (Ke et al., 
2017; Sohn et al., 2017). Such automation can significantly increase the capacity 
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of a care team to provide quality care or, at the very least, free up their time from 
the busy work of reporting outcomes. Below, additional examples are discussed 
regarding applications driving the use of algorithms to classify, predict, and treat, 
which can guide users in figuring out for whom to take action and when. These 
applications may be driven by needs of providers, payers, or patients and their 
caregivers (see Table 5-1).

MODEL DEVELOPMENT

Establishing Utility

One of the most critical components of developing AI for health care is to 
define and characterize the problem to be addressed and then evaluate whether 
it can be solved (or is worth solving) using AI and machine learning. Doing so 
requires an assessment of utility, feasibility given available data, implementation 
costs, deployment challenges, clinical uptake, and maintenance over time. This 
chapter focuses on the process necessary to develop and validate a model, and 
Chapter 6 covers the issues of implementation, clinical use, and maintenance.

It is useful to think in terms of how one would act given a model’s output 
when considering the utility of AI in health care. Factors affecting the clinical 
utility of a predictive model may include lead time offered by the prediction, the 
existence of a mitigating action, the cost and ease of intervening, the logistics 
of the intervention, and incentives (Amarasingham et al., 2014; Meskó et al., 
2018; Yu et al., 2018). While model evaluation typically focuses on metrics such 
as positive predictive value, sensitivity (or recall), specificity, and calibration, 

TABLE 5-1 | Example of Artificial Intelligence Applications by the Primary Task and 
Main Stakeholder

Classify (Diagnose) Predict (Prognose) Treat

Payers Identify which patients 
will not adhere to a 
treatment plan

Estimate risk of a 
“no-show” for a 
magnetic resonance 
imaging appointment

Select the best second 
line agent for managing 
diabetes after Metformin 
given a specific clinical 
history

Patients and 
caregivers

Estimate risk of having 
an undiagnosed genetic 
condition (e.g., familial 
hypercholesterolemia)

Estimate risk 
of a postsurgical 
complication

Identify a combination 
of anticancer drugs that 
will work for a specific 
tumor type

Providers Identify patients with 
unrecognized mental 
health needs

Determine risk of acute 
deterioration needing 
heightened care

Establish how to manage 
an incidentally found 
atrial septal defect
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constraints on the action triggered by the model’s output (e.g., continuous rhythm 
monitoring might be constrained by availability of Holter monitors) often can 
have a much larger influence in determining model utility (Moons et al., 2012).

For example, if Vera was suspected of having atrial fibrillation based on a 
personalized risk estimate (Kwong et al., 2017), the execution of follow-up action 
(such as rhythm monitoring for 24 hours) depends on availability of the right 
equipment. In the absence of the ability to follow up, having a personalized 
estimate of having undiagnosed atrial fibrillation does not improve Vera’s care.

Therefore, a framework for assessing the utility of a prediction-action pair 
resulting from an AI solution is necessary. During this assessment process, there 
are several key conceptual questions that must be answered (see Box 5-1). 
Quantitative answers to these questions can drive analyses for optimizing the 
desired outcomes, adjusting components of the expected utility formulation and 
fixing variables that are difficult to modify (e.g., the cost of an action) to derive 
the bounds of optimal utility.

For effective development and validation of AI/machine learning applications 
in health care, one needs to carefully formulate the problem to be solved, taking 
into consideration the properties of the algorithm (e.g., positive predictive value) 
and the properties of the resulting action (e.g., effectiveness), as well as the 
constraints on the action (e.g., costs, capacity), given the clinical and psychosocial 
environment.

If Vera’s diagnosis was confirmed and subsequently the CHADS2 risk score 
indicated a high 1-year risk of ischemic stroke, the utility of treating using 
anticoagulants has to be determined in the light of the positive predictive value of 
the CHADS2 score and the known (or estimated) effectiveness of anticoagulation 
in preventing the stroke as well as the increased risk of bleeding incurred from 
anticoagulant use in the presence of hypertension.

BOX 5-1

Key Considerations in Model Development

• What will the downstream interventions be?

• Who is the target user of the model’s output?

• What are the mechanics of executing the intervention?

• What is the risk of failure and adverse events?

• What is the capacity to intervene given existing resources?

• What accuracy is needed, and are false positives or negatives less desirable?

• What is the desired outcome change following intervention?
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Choices Before Beginning Model Development

After the potential utility has been established, there are some key choices 
that must be made prior to actual model development. Both model developers 
and model users are needed at this stage in order to maximize the chances of 
succeeding in model development because many modeling choices are dependent 
on the context of use of the model. Although clinical validity is discussed in 
Chapter 6, we note here that the need for external validity depends on what one 
wishes to do with the model, the degree of agency ascribed to the model, and the 
nature of the action triggered by the model.

The Two Cultures of Data Modeling and Algorithmic Modeling

Expert-driven systems attempt to capture knowledge and derive decisions 
through explicit representation of expert knowledge. These types of systems 
make use of established biomedical knowledge, conventions, and relationships. 
The earliest AI systems in health care were all expert-driven systems, given the 
paucity of datasets to learn from (e.g., MYCIN) (Shortliffe, 1974).

Modern AI systems often do not attempt to encode prior medical knowledge 
directly into the algorithms but attempt to uncover these relationships during model 
learning. Inexpensive data storage, fast processors, and advancements in machine 
learning techniques have made it feasible to use large datasets, which can uncover 
previously unknown relationships. They have also been shown to outperform 
expert-driven approaches in many cases, as illustrated through the latest digital 
medicine focus in Nature Medicine (Esteva et al., 2019; Gottesman et al., 2019; He 
et al., 2019). However, learning directly from the data carries the risk of obtaining 
models with decreased interpretability, getting potentially counterintuitive (to a 
clinical audience) models and models that are overfitted and fail to generalize, and 
propagating biased decision making by codifying the existing biases in the medical 
system (Char et al., 2018; Chen et al., 2019; Vellido, 2019; Wang et al., 2018).

In addition, when a model is learning from (or being fitted to) the available data, 
there are often conflicting views that lie at two ends of a spectrum (Breiman, 2001). 
At one end are approaches that posit a causal diagram of which variables influence 
other variables, in such a way that this “model” is able to faithfully represent the 
underlying process that led to the observed data—that is, we attempt to model the 
process that produced the data (Breiman, 2001). At the other end of the spectrum 
are approaches that treat the true mechanisms that produced the observed data as 
unknown and focus on learning a mathematical function that maps the given set of 
input variables to the observed outcomes. Such models merely capture associations 
and make no claim regarding causality (Cleophas et al., 2013).
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As an example, consider the situation of taking a dataset of observed 
characteristics on 1 million individuals and building a model to assess the risk 
of a heart attack in 1 year. The causal approach would require that the variables 
we collect—such as age, race, gender, lipid levels, and blood pressure—have 
some underlying biological role in the mechanisms that lead to heart attacks. 
Once a model learns from the data, the variables that are most associated with 
the outcome “have a role” in causing the outcome; modifying those variables 
(e.g., lowering lipid levels) reduces the risk of the outcome (the heart attack). 
Typically, such models also have external validity in the sense that the risk 
equation learned once (e.g., from the Framingham Heart Study in New 
Hampshire) works in a different geography (e.g., California) decades later (Fox, 
2010; Mason et al., 2012). If one is interested purely in associations, one might 
include every variable available, such as hair color, and also tolerate the fact 
that some key items such as lipid levels are missing. In this case the model—
the mathematical function mapping inputs to outcomes—learns to weigh “hair 
color” as an important factor for heart attack risk and learns that people with 
white or gray hair have a higher risk of heart attacks. Clearly, this is a cartoon 
example, as coloring people’s hair black does nothing to reduce their heart 
attack risk. However, if one needs to estimate financial risk in insuring our 
hypothetical population of 1 million individuals, and a large fraction of that 
population has white or gray hair, a model need not be “causal.” As Judea Pearl 
writes, “Good predictions need not have good explanations. The owl can be a 
good hunter without understanding why the rat always goes from point A to 
point B” (Pearl and Mackenzie, 2018).

Ideally, one can combine prior medical knowledge of causal relationships 
with learning from data in order to develop an accurate model (Schulam and 
Saria, 2017; Subbaswamy et al., 2018). Such combination of prior data can take 
multiple forms. For example, one can encode the structure fully and learn the 
parameters from data (Sachs et al., 2005). Alternatively, one could develop models 
that faithfully represent what is known about the disease and learn the remaining 
structure and parameters (Schulam and Saria, 2017; Subbaswamy et al., 2018).

Model learning that incorporates prior knowledge automatically satisfies 
construct validity and is less likely to generate counterintuitive predictions. Many 
view the use of prior knowledge or causal relationships as impractical for any 
sufficiently complex problem, in part because the full set of causal relationships is 
rarely known. However, recent works show that even when we have established 
only partial understanding of causal relationships, we can improve generalizability 
across environments by removing spurious relationships that are less likely to 
be generalizable, thereby reducing the risk of catastrophic prediction failures 
(Schulam and Saria, 2017; Subbaswamy et al., 2018).
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The topic of interpretability deserves special discussion because of ongoing 
debates around interpretability, or the lack of it (Licitra et al., 2017; Lipton, 2016; 
Voosen, 2017). Interpretability can mean different things to the individuals who 
build the models and the individuals who consume the model’s output. To the 
model builder, interpretability often means the ability to explain which variables 
and their combinations, in what manner, led to the output produced by the 
model (Friedler et al., 2019). To the clinical user, interpretability could mean 
one of two things: a sufficient enough understanding of what is going on, so 
that they can trust the output and/or be able to get liability insurance for its 
recommendations; or enough causality in the model structure to provide hints as 
to what mitigating action to take. The Framingham risk equation satisfies all three 
meanings of interpretability (Greenland et al., 2001). Interpretability is not always 
necessary, nor is it sufficient for utility. Given two models of equal performance, 
one a black box model and one an interpretable model, most users prefer the 
interpretable model (Lipton, 2016). However, in many practical scenarios, models 
that may not be as easily interpreted can lead to better performance. Gaining 
users’ trust has often been cited as a reason for interpretability (Abdul, 2018). 
The level of users’ trust highly depends on the users’ understanding of the target 
problems. For example, one does not need to have an interpretable model for a 
rain forecast in order to rely on it when deciding whether to carry an umbrella, 
as long as the model is correct enough, often enough, because a rain forecast is a 
complex problem beyond the understanding of individuals. For non-expert users, 
as long as the model is well validated, the degree of interpretability often does 
not affect user trust in the model, whereas expert users tend to demand a higher 
degree of model interpretability (Poursabzi-Sangdeh, 2018).

To avoid wasted effort, it is important to understand what kind of interpretability 
is needed in a particular application. For example, consider the prediction of 
24-hour mortality using a deep neural network (Rajkomar et al., 2018). It 
can take considerably more effort to train and interpret deep neural networks, 
while linear models, which are arguably more interpretable, may yield sufficient 
performance. If interpretability is deemed necessary, it is important to understand 
why interpretability is needed. In Rajkomar et al. (2018), the neural networks 
for predicting high 24-hour mortality risk were interrogated to interpret their 
predictions and highlight the reasons for the high mortality risk. For a patient with 
high 24-hour mortality risk, in one case, the reasons provided were the presence 
of metastatic breast cancer with malignant pleural effusions and empyema. Such 
engineering interpretability, while certainly valid, does not provide suggestions 
for what to do in response to the high-mortality prediction.

A black box model may suffice if the output was trusted, and the recommended 
intervention was known to affect the outcome. Trust in the output can be obtained 
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by rigorous testing and prospective assessment of how often the model’s predictions 
are correct and calibrated, and for assessing the impact of the interventions on the 
outcome. At the same time, prospective assessment can be costly. Thus, doing all one 
can to vet the model in advance (e.g., by inspecting learned relationships) is imperative.

Augmentation Versus Automation

In health care, physicians are accustomed to augmentations. For example, 
a doctor is supported by a team of intelligent agents, including specialists, nurses, 
physician assistants, pharmacists, social workers, case managers, and other health 
care professionals (Meskó et al., 2018). While much of the popular discussion of AI 
focuses on how AI tools will replace human workers, in the foreseeable future, AI 
will function in an augmenting role, adding to the capabilities of the technology’s 
human partners. As the volume of data and information available for patient care 
grows exponentially, AI tools will naturally become part of such a care team. They 
will provide task-specific expertise in the data and information space, augmenting the 
capabilities of the physician and the entire team, making their jobs easier and more 
effective, and ultimately improving patient care (Herasevich et al., 2018; Wu, 2019).

There has been considerable ongoing discussion about the level of autonomy 
that AI can or should have within the health care environment (Verghese et al., 
2018). The required performance characteristics and latitude of use of AI models 
is substantially different when the model is operating autonomously versus when 
a human is using it as an advisor and making the final decision. This axis also has 
significant policy, regulatory, and legislative considerations, which are discussed in 
Chapter 7. It is likely that progress in health care AI will proceed more rapidly 
when these AI systems are designed with the human in the loop, with attention 
to the prediction-action pairing, and with considerations of the societal, clinical, 
and personal contexts of use. The utility of those systems highly depends on 
the ability to augment human decision-making capabilities in disease prevention, 
diagnosis, treatment, and prognosis.

Selection of a Learning Approach

The subfield of AI focused on learning from data is known as machine learning. 
Machine learning can be grouped into three main approaches: (1) supervised, 
(2) unsupervised, and (3) reinforcement learning. Each approach can address 
different needs within health care.

Supervised learning focuses on learning from a collection of labeled examples. 
Each example (i.e., patient) is represented by input data (e.g., demographics, vital 
signs, laboratory results) and a label (such as being diabetic or not). The learning 
algorithm then seeks to learn a mapping from the inputs to the labels that can 
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generalize to new examples. There have been many successful applications of 
supervised learning to health care. For example, Rajpurkar et al. (2018) developed 
an AI system that classified 14 conditions in chest radiographs at a performance 
level comparable to that of practicing radiologists. Based on the training data, 
their system learned which image features were most closely associated with the 
different diagnoses. Such systems can also be used to train models that predict 
future events. For example, Rajkomar et al. (2018) used supervised learning to 
learn a mapping from the structured as well as textual contents of the EHR to a 
patient’s risk for mortality, readmission, and diagnosis with specific International 
Classification of Diseases, Ninth Revision, codes by discharge (Rajkomar et al., 2018). 
This method of training a model is popular in settings with a clear outcome 
and large amounts of labeled data. However, obtaining labeled data is not always 
straightforward. Unambiguous labels may be difficult to obtain for a number of 
reasons: the outcome or classification may be ambiguous, with little interclinician 
agreement; the labeling process may be labor intensive and costly; or labels may 
simply be unavailable. In many settings, there may not be a large enough dataset 
to confidently train a model. In such settings, weakly supervised learning can 
be leveraged when noisy, weak signals are available. For example, to mitigate the 
burden of expensive annotations, one study used weak supervision to learn a 
severity score for acute deterioration (Dyagilev and Saria, 2016). In another study 
where it was not possible to acquire gold-standard labels, weak supervision was 
used to learn a disease progression score for Parkinson’s disease (Zhan et al., 2018). 
Various other strategies, including semi-supervised learning and active learning, 
can be deployed to reduce the amount of labeled data needed (Zhou, 2017).

Unsupervised learning seeks to examine a collection of unlabeled examples 
and group them by some notion of shared commonality. Clustering is one of 
the common unsupervised learning tasks. Clustering algorithms are largely used 
for exploratory purposes and can help identify structure and substructure in the 
data. For example, Williams et al. (2018) clustered data pertaining to more than 
10,000 pediatric intensive care unit admissions, identifying clinically relevant 
clusters. Unsupervised learning can also be used to stage or subtype heterogeneous 
disease (Doshi-Velez et al., 2014; Goyal et al., 2018; Saria and Goldenberg, 2015). 
Here, the difficulty lies not in obtaining the grouping—although such techniques 
similarly suffer from small datasets—but in evaluating it. When given a dataset and 
a clustering algorithm, we always get a grouping. The challenge, then, is whether 
the presence of the groups (i.e., clusters) or learning that a new patient is deemed a 
member of a certain group is actionable in the form of offering different treatment 
options. Most often, the ability to reproduce the same groups in another dataset 
is considered a sign that the groups are medically meaningful and perhaps they 
should be managed differently. If the fact that a new record belongs to a certain 
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group allows an assignment of higher (or lower) risk of specific outcomes, that 
is considered a sign that the learned groups have meaning. For example, Shah 
et al. (2015) analyzed a group of roughly 450 patients who had heart failure with 
preserved ejection fraction in order to find three subgroups (Shah et al., 2015). In 
data that were not used to learn the groups, application of the grouping scheme 
sorted patients into high, medium, and low risk of subsequent mortality.

Reinforcement learning differs from supervised and unsupervised learning, 
because the algorithm learns through interacting with its environments rather than 
through observational data alone. Such techniques have had recent successes in game 
settings (Hutson, 2017). In games, an agent begins in some initial stage and then takes 
actions affecting the environment (i.e., transitioning to a new state) and receiving a 
reward. This framework mimics how clinicians may interact with their environment, 
adjusting medication or therapy based on observed effects. Reinforcement learning 
is most applicable in settings involving sequential decision making where the reward 
may be delayed (i.e., not received for several time steps). Although most applications 
consider online settings, recent work in health care has applied reinforcement 
learning in an offline setting using observational data (Komorowski et al., 2018). 
Reinforcement learning holds promise, although its current applications suffer from 
issues of confounding and lack of actionability (Saria, 2018).

LEARNING A MODEL

To illustrate the process of learning a model, we focus on a supervised learning 
task for risk stratification in health care. Assume we have n patients. Each patient 
is represented by a d-dimensional feature vector that lies in some feature space X 
(see rows in Figure 5-1). In addition, each patient has some label, y, representing 
that patient’s outcome or condition (such as being diabetic or not). In some 
settings, we may have only a single label for each patient; in others we may have 
multiple labels that vary over time. We begin with the simple case of only a single 
binary label per patient. The task is to learn a mapping from the vector X to y. 
This mapping is called the model and is performed by a learning algorithm such 
as stochastic gradient descent.

As discussed earlier, the degree to which the resulting model is causal is the degree 
to which it is an accurate representation of the true underlying process, denoted by 
f(x) in Figure 5-1. Depending on the data available, the degree of prior knowledge 
used in constraining the model’s structure, and the specific learning algorithm 
employed, we learn models that support differing degrees of causal interpretation.

Once the model is learned, given a new patient represented by a feature vector, 
we can then estimate the probability of the outcome. The data used to learn the 
model are called training data, and the new data used to assess how well a model 
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BOX 5-2

Key Definitions in Model Development

• Training dataset: A dataset of instances used for learning parameters of a 

model.

• Validation dataset: A dataset of instances used to tune the hyperparameters of 

a model.

• Test dataset: A dataset that is independent of the training dataset but follows 

the same distribution as the training dataset. If part of the original dataset is set 

aside and used as a test set, it is also called holdout dataset.

• K-fold cross validation: A dataset is randomly partitioned into K parts and one 

part is set for testing, and the model is trained on the remaining K-1 parts, and the 

model is evaluated on the holdout part.

• External cross validation: Perform cross validation across various settings of 

model parameters and report the best result.

• Internal cross validation: Perform cross validation on the training data and train 

a model on the best set of parameters.

• Sensitivity: Proportion of actual positives that are correctly identified in a 

binary classification. It is also called the true positive rate (TPR), the recall, 

or probability of detection.

• Specificity: Proportion of actual negatives that are correctly identified in a binary 

classification. It is also called the true negative rate.

• Precision: Proportion of predicted positives that are true positives. It is also called 

the positive predictive value.

• Accuracy: Proportion of correctly identified instances among all instances 

examined.

• Receiver operating characteristic (ROC) curve: Graphical plot created 

by plotting the TPR against a false positive rate. The area under the ROC 

curve is a measure of how well a parameter setting can distinguish between 

two groups.

• Precision-recall (PR) curve: Graphical plot created by plotting the precision 

against the recall to show the trade-off between precision and recall for different 

parameter settings. The area under the PR curve is a better measure for highly 

imbalanced classification tasks.

SOURCE: Bottou et al., 2018.
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performs are the test data (Wikipedia, 2019). Training data are often further split 
into training and validation subsets. Model selection, which is the selection of one 
specific model from among the many that are possible given the training data, is 
performed using the validation data.

Choosing the Data to Learn From

Bad data will result in bad models, recalling the age-old adage “garbage in, garbage 
out” (Kilkenny and Robinson, 2018). There is a tendency to hype AI as something 
magical that can learn no matter what the inputs are. In practice, the choice of data 
always trumps the choice of the specific mathematical formulation of the model.

In choosing the data for any model learning exercise, the outcome of interest 
(e.g., inpatient mortality) and the process for extracting it (e.g., identified using 
chart review of the discharge summary note) should be described in a reproducible 
manner. If the problem involves time-series data, the time at which an outcome 
is observed and recorded versus the time at which it needs to be predicted have 
to be defined upfront (see Figure 5-2). The window of data used to learn the 
model (i.e., observation window) and the amount of lead time needed from the 
prediction should be included.

It is necessary to provide a detailed description of the process of data acquisition, 
the criteria for subselecting the training data, and the description and prevalence 
of attributes that are likely to affect how the model will perform on a new dataset. 
For example, when building a predictive model, subjects in the training data may 

FIGURE 5-1 | What is a model?
NOTE: A model is a map from inputs (X) to an output (y)—mathematically, a function. We implicitly assume 

that there is a real data-generating function, f(x), which is unknown and is what we are trying to represent at varying 

degrees of fidelity.

SOURCE: Developed by Alejandro Schuler and Nigam Shah for BIOMEDIN 215 at Stanford University.
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not be representative of the target population (i.e., selection bias). Meanwhile, 
errors in measuring exposure or disease occurrences can be an important source 
of bias (i.e., measurement bias), especially when using EHR data as a source of 
measurements (Gianfrancesco et al., 2018). Both selection bias and measurement 
bias can affect the accuracy as well as generalizability of a predictive model learned 
from the data (Suresh and Guttag, 2019).

The degree to which the chosen data affect generalization of a model learned 
from it depends on the method used for modeling and the biases inherent in the 
data during their acquisition. For example, models can be susceptible to provider 
practice patterns; most models trained using supervised learning assume that 
practice patterns in the new environment are similar to those in the development 
environment (Schulam and Saria, 2017). The degree of left censoring, right 
censoring, or missingness can also affect generalization (Dyagilev and Saria, 2016; 
Molenberghs and Kenward, 2007; Schulam and Saria, 2018). Finally, the processes 
by which the data are generated and collected also change over time. This change, 
known as nonstationarity in the data, can have a significant effect on model 
performance (Jung and Shah, 2015). Using stale data can lead to suboptimal 
learning by models, which then get labeled as biased or unfair.

FIGURE 5-2 | Patient timeline and associated data-gathering opportunities.
NOTES: Specific events in the timeline are denoted by gray circles. The colored portions of the timeline below 

the gray line show the different types of data that may be collected at different encounters and the fact that not 

everything is collected at the same time. Almost no data source provides a continuous measurement of the patient’s 

health except data streams of intensive care unit monitors used in short stretches. (Wearables increasingly promise such 

continuous data but their use in health care is just beginning.) The red arrow shows a chosen point in the timeline 

where a prediction attempt is made. Only data prior to that are available for model learning for that prediction. Each 

prediction offers the chance of taking some action before the predicted event happens. The time interval between 

the prediction data and the soonest possible occurrence of the predicted event indicates the lead time available to 

complete the necessary mitigating action.

SOURCE: Developed by Alejandro Schuler and Nigam Shah for BIOMEDIN 215 at Stanford University.
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The decisions made during the creation and acquisition of datasets will be 
reflected in downstream models. In addition to knowing the final features 
representing patient data (see Figure 5-1), any preprocessing steps should be clearly 
documented and made available with the model. Such data-wrangling steps (e.g., 
how one dealt with missing values or irregularly sampled data) are often overlooked 
or not reported. The choices made around data preparation and transformation 
into the analytical data representation can contribute significantly to bias that then 
gets incorporated into the AI algorithm (Suresh and Guttag, 2019).

Often, the users of the model’s output hold the model itself responsible for such 
biases, rather than the underlying data and the model developer’s design decisions 
surrounding the data (Char et al., 2018). In nonmedical fields, there are numerous 
examples in which model use has reflected biases inherent in the data used to train 
them (Angwin et al., 2016; Char et al., 2018; O’Neil, 2017). For example, programs 
designed to aid judges in sentencing by predicting an offender’s risk of recidivism 
have shown racial discrimination (Angwin et al., 2016). In health care, attempts to 
use data from the Framingham Heart Study to predict the risk of cardiovascular 
events in minority populations have led to biased risk estimates (Gijsberts et al., 
2015). Subtle discrimination inherent in health care delivery may be harder to 
anticipate; as a result, it may be more difficult to prevent an algorithm from learning 
and incorporating this type of bias (Shah et al., 2018). Such biases may lead to 
self-fulfilling prophesies: If clinicians always withdraw care from patients with 
certain findings (e.g., extreme prematurity or a brain injury), machine learning 
systems may conclude that such findings are always fatal. (Note that the degree to 
which such biases may affect actual patient care depends on the degree of causality 
ascribed to the model and to the process of choosing the downstream action.)

Learning Setup

In the machine learning literature, the dataset from which a model is learned is 
also called the training dataset. Sometimes a portion of this dataset may be set aside 
for tuning hyperparameters—the weights assigned to different variables and their 
combinations. This portion of the training data is referred to as the hyperparameter-
validation dataset, or often just the validation dataset. The validation dataset confirms 
whether the choices of the values of the parameters in the model are correct or 
not. Note that the nomenclature is unfortunate, because these validation data have 
nothing to do with the notion of clinical validation or external validity.

Given that the model was developed from the training/validation data, it is 
necessary to evaluate its performance in classifying or making predictions on a 
“holdout” test set (see Figure 5-1). This test set is held out in the sense that it was 
not used to select model parameters or hyperparameters. The test set should be as 
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close as possible to the data that the model would be applied to in routine use. The 
choice of metrics used to assess a model’s performance is guided by the end goal of 
the modeling as well as the type of learning being conducted (e.g., unsupervised 
versus supervised). Here, we focus on metrics for supervised binary classifiers (e.g., 
patient risk stratification tools). The estimation of metrics can be obtained through 
cross validation where the whole dataset is split randomly into multiple parts with 
one part set as the test set and the remaining parts used for training a model.

Choosing Metrics of Model Performance

Recall and precision are two of the most debated performance metrics because 
they exhibit varying importance based on the use case. Sensitivity quantifies a 
classifier’s ability to identify the true positive cases. Typically, a highly sensitive 
classifier can reliably rule out a disease when its result is negative (Davidson, 2002). 
Precision quantifies a classifier’s ability to correctly identify a true positive case—that 
is, it estimates the number of times the classifier falsely categorizes a noncase as a case. 
Specificity quantifies the portion of actual negatives that are correctly identified as 
such. There is a trade-off between the recall, precision, and specificity measures, which 
needs to be resolved based on the clinical question of interest. For situations where 
we cannot afford to miss a case, high sensitivity is desired. Often, a highly sensitive 
classifier is followed up with a highly specific test to identify the false positives among 
those flagged by the sensitive classifier. The trade-off between specificity and sensitivity 
can be visually explored in the receiver operating characteristic (ROC) curve. The 
area under the ROC (AUROC) curve is the most popular index for summarizing 
the information in the ROC curves. When reporting results on the holdout test set, 
we recommend going beyond the AUROC curve and instead reporting the entire 
ROC curve as well as the sensitivity, specificity, positive predictive value, and negative 
predictive value at a variety of points on the curve that represent reasonable decision-
making cutoffs (Bradley, 1997; Hanley and McNeil, 1982).

However, the limitations of the ROC curves are well known even though they 
continue to be widely used (Cook, 2007). Despite the popularity of AUROC 
curve and ROC curve for evaluating classifier performance, there are other 
important considerations. First, the utility offered by two ROC curves can be 
wildly different, and it is possible that classifiers with a lower overall AUROC 
curve have higher utility based on the shape of the ROC curve. Second, in highly 
imbalanced datasets, where negative and positive labels are not distributed equally, 
a precision-recall (PR) curve provides a better basis for comparing classifiers 
(McClish, 1989). Therefore, in order to enable meaningful comparisons, researchers 
should report both the AUROC curve and area under the PR curve, along with 
the actual curves, and error bars around the average classifier performance.
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For decision making in the clinic, additional metrics such as calibration, net 
reclassification, and a utility assessment are necessary (Lorent et al., 2019; Shah 
et al., 2019; Steyerberg et al., 2010). While the ROC curves provide information 
about a classifier’s ability to discriminate a true case from a noncase, calibration 
metrics quantify how well the predicted probabilities of a true case being a case 
agree with observed proportions of cases and noncases. For a well-calibrated 
classifier, 90 of 100 samples with a predicted probability of 0.9 will be correctly 
identified true cases (Cook, 2008).

When evaluating the use of machine learning models, it is also important to 
develop parallel baselines, such as a penalized regression model applied on the 
same data that are supplied to more sophisticated models such as deep learning 
or random forests. Given the non-obvious relationship between a model’s 
positive predictive value, recall, and specificity to its utility, having these parallel 
models provides another axis of evaluation in terms of cost of implementation, 
interpretability, and relative performance.

Aside from issues related to quantifying the incremental value of using a 
model to improve care delivery, there are methodological issues in continuously 
evaluating or testing a model as the underlying data change. For example, a model 
for predicting 24-hour mortality could be retrained every week or every day as 
new data become available. It is unclear which metrics of the underlying data as 
well as of the model performance we should monitor to manage such continuously 
evolving models. It is also unclear how to set the retraining schedule, and what 
information should guide that decision. The issues of model surveillance and 
implementation are more deeply addressed in Chapter 6. Finally, there are unique 
regulatory issues that arise if a model might get retrained after it is approved 
and then behave differently, and some of the current guidance for these issues is 
discussed in Chapter 7.

DATA QUALIT Y

A variety of issues affect data integrity in health care. For example, the software 
for data retrieval, preprocessing, and cleaning is often lost or not maintained, 
making it impossible to re-create the same dataset. In addition, the data from the 
source system(s) may have been discarded or may have changed. The problem 
is further compounded by fast-changing data sources or changes over time in 
institutional data stores or governance procedures. Finally, silos of expertise and 
access around data sources create dependence on individual people or teams. 
When the collection and provenance of the data that a model is trained on is a black 
box, researchers must compensate with reliance on trusted individuals or teams, 
which is suboptimal and not sustainable in the long run. Developing AI based 
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on bad data further amplifies the potential negative impacts of poor-quality 
data. Consider, for example, that race and ethnicity information is simply not 
recorded, is missing, or is wrong in more than 30 to 40 percent of the records 
at most medical centers (Huser et al., 2016, 2018; Khare et al., 2017). Given the 
poor quality of these data, arguments about unfairness of predictive models for 
ethnic groups remain an academic discussion (Kroll, 2018). As a community, we 
need to address the quality of data that the vast majority of the enterprise is 
collecting. The quality is highly variable and acknowledging this variability as 
well as managing it during model building is essential. To effectively use AI, it 
is essential to follow good data practices in both the creation and curation of 
retrospective datasets for model training and in the prospective collection of the 
data. The quality of these data practices affects the development of models and the 
successful implementation at the point of care.

It is widely accepted that the successful development of an AI system requires 
high-quality data. However, the assessment of the quality of data that are available 
and the methodology to create a high-quality dataset are not standardized or often 
are nonexistent. Methods to assess data validity and reproducibility are often ad 
hoc. Efforts made by large research networks such as the Observational Health 
Data Science and Informatics collaborative as well as the Sentinel project have 
begun to outline quality assurance practices for data used to train AI models. 
Ideally, data should be cross-validated from multiple sources to best determine 
trustworthiness. Also, multiple subject matter experts should be involved in data 
validation (for both outcome and explanatory variables). In manually abstracted 
and annotated datasets, having multiple trained annotators can provide an accurate 
assessment of the ambiguity and variability inherent in data. For example, when 
tasked with identifying surgical site infection, there was little ambiguity whether 
infection was present or not; however, there was little agreement about the severity 
of the infection (Nuttall et al., 2016). Insufficiently capturing the provenance and 
semantics of such outcomes in datasets is at best inefficient. At worst, it can be 
outright dangerous, because datasets may have unspecified biases or assumptions, 
leading to models that produce inappropriate results in certain contexts. Ultimately, 
for the predictions (or classifications) from models to be trusted for clinical use, 
the semantics and provenance of the data used to derive them must be fully 
transparent, unambiguously communicated, and available for validation.

An often-missed issue around data is that the data used for training the model 
must be such that they are actually available in the real-world environment 
where the AI trained on the data will be used. For example, an AI analyzing 
electrocardiogram (ECG) waveforms must have a way to access the waveforms at 
the point of care. For instance, waveforms captured on a Holter monitor may not 
be available for clinical interpretation for hours, if not days, due to the difficulty of 
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processing the large amount of data, whereas an irregular heart rhythm presenting 
on a 12-lead ECG may be interpreted and acted upon within minutes. Therefore, 
AI development teams should have information technology (IT) engineers who 
are knowledgeable about the details of when and where certain data become 
available and whether the mechanics of data availability and access are compatible 
with the model being constructed.

Another critical point is that the acquisition of the data elements present in the 
training data must be possible without major effort. Models derived using datasets 
where data elements are manually abstracted (e.g., Surgical Risk Calculator from 
the American College of Surgeons) cannot be deployed without significant 
investment by the deploying site to acquire the necessary data elements for the 
patient for whom the model needs to be used. While this issue can be overcome 
with computational phenotyping methods, such methods struggle with portability 
due to EHR system variations resulting in different reporting schemes, as well 
as clinical practice and workflow differences. With the rise of interoperability 
standards such as the Fast Healthcare Interoperability Resource, the magnitude 
of this problem is likely to decrease in the near future. When computationally 
defined phenotypes serve as the basis for downstream analytics, it is important 
that computational phenotypes themselves be well managed and clearly defined 
and adequately reflect the target domain.

As a reasonable starting point for minimizing the data quality issues, data should 
adhere to the FAIR (findability, accessibility, interoperability, and reusability) 
principles in order to maximize the value of the data (Wilkinson et al., 2016). 
Researchers in molecular biology and bioinformatics put forth these principles, 
and, admittedly, their applicability in health care is not easy or straightforward.

One of the unique challenges (and opportunities) facing impactful design and 
implementation of AI in health care is the disparate data types that comprise today’s 
health care data. Today’s EHRs and wearable devices have greatly increased the 
volume, variety, and velocity of clinical data. The soon-to-be in-clinic promise of 
genomic data further complicates the problems of maintaining data provenance, 
timely availability of data, and knowing what data will be available for which 
patient at what time.

Always keeping a timeline view of the patient’s medical record is essential 
(see Figure 5-2), as is explicitly knowing the times at which the different data 
types across different sources come into existence. It stands to reason that any 
predictive or classification model operating at a given point in the patient 
timeline can only expect to use data that have come into being prior to the time 
at which the model is used (Jung et al., 2016; Panesar, 2019). Such a real-life 
view of data availability is crucial when building models, because using clean 
data gives an overly optimistic view of models’ performance and an unrealistic 
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impression of their potential value. Finally, we note that the use of synthetic data, 
if created to mirror real-life data in its missingness and acquisition delay by data 
type, can serve as a useful strategy for a model builder to create realistic training 
and testing environments for novel methods (Carnegie Mellon University, 2018; 
Franklin et al., 2017; Schuler, 2018).

EDUCATION

It is critical that we educate the community regarding data science, AI, 
medicine, and health care. Progress is contingent on creating a critical mass of 
experts in data science and AI who understand the mission, culture, workflow, 
strategic plan, and infrastructure of health care institutions.

As decision makers in health care institutions invest in data, tools, and 
personnel related to data science and AI, there is enormous pressure for rapid 
results. Such pressures raise two extremes of issues. On the one hand, the 
relative ease of implementing newly developed AI solutions rapidly can lead to 
the implementation of solutions in routine clinical care without an adequate 
understanding of their validity and potential influence on care, raising the 
potential for wasted resources and even patient harm (Herper, 2017). On the 
other hand, holding the AI models to superhuman standards and constantly 
requiring that evaluations outcompete doctors is also a flawed attitude that could 
lead to valuable solutions never getting implemented. Vendors of health care IT 
have an incentive to overstate the value of data science and AI generally. Limited 
attention has been given to the significant risk of harm, from wasting resources 
as well as from relying on evaluation strategies decoupled from the action they 
influence (Abrams, 2019) or relying on evaluation regimes that avoid simple and 
obvious baseline comparisons (Christodoulou et al., 2019).

KEY CONSIDERATIONS

The rapid increase in the volume and variety of data in health care has driven 
the current interest in the use of AI (Roski et al., 2014). There is active discussion 
and interest in addressing the potential ethical issues in using AI (Char et al., 2018), 
the need for humanizing AI (Israni and Verghese, 2019), the potential unintended 
consequences (Cabitza et al., 2017), and the need to tamper the hype (Beam and 
Kohane, 2018). However, more discovery and work in these areas is essential. 
The way that AI is developed, evaluated, and utilized in health care must change. 
At present, most of the existing discussion focuses on evaluating the model from 
a technical standpoint. A critically underassessed area is the net benefit of the 
integration of AI into clinical practice workflow (see Chapter 6).
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Establishing Utility

When considering the use of AI in health care, it is necessary to know how 
one would act given a model’s output. While model evaluation typically focuses 
on metrics such as positive predictive value, sensitivity (or recall), specificity, and 
calibration, constraints on the action triggered by the model’s output (e.g., continuous 
rhythm monitoring constraint based on availability of Holter monitors) often can 
have a much larger influence in determining model utility (Moons et al., 2012). 
Completing model selection, then doing a net-benefit analysis, and later factoring 
work constraints are suboptimal (Shah et al., 2019). Realizing the benefit of using 
AI requires defining potential utility upfront. Only by including the characteristics 
of actions taken on the basis of the model’s predictions, and factoring in their 
implications, can a model’s potential usefulness in improving care be properly assessed.

Model Learning

After the potential utility has been established, model developers and model 
users need to interact closely during model learning because many modeling 
choices are dependent on the context of use of the model (Wiens et al., 2019). 
For example, the need for external validity depends on what one wishes to do 
with the model, the degree of agency ascribed to the model, and the nature of 
the action triggered by the model.

It is well known that biased data will result in biased models; thus, the data that are 
selected to learn from matter far more than the choice of the specific mathematical 
formulation of the model. Model builders need to pay closer attention to the data 
they train on and need to think beyond the technical evaluation of models. Even in 
technical evaluation, it is necessary to look beyond the ROC curves and examine 
multiple dimensions of performance (see Box 5-2). For decision making in the clinic, 
additional metrics such as calibration, net reclassification, and a utility assessment are 
necessary. Given the non-obvious relationship between a model’s positive predictive 
value, recall, and specificity to its utility, it is important to examine simple and 
obvious parallel baselines, such as a penalized regression model applied on the same 
data that are supplied to more sophisticated models such as deep learning.

The topic of interpretability deserves special discussion because of ongoing 
debates around interpretability, or the lack of it (Licitra et al., 2017; Lipton, 2016; 
Voosen, 2017). To the model builder, interpretability often means the ability to 
explain which variables and their combinations, in what manner, led to the output 
produced by the model (Friedler et al., 2019). To the clinical user, interpretability 
could mean one of two things: a sufficient enough understanding of what is going 
on, so that they can trust the output and/or be able to get liability insurance for its 
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recommendations; or enough causality in the model structure to provide hints as to 
what mitigating action to take. To avoid wasted effort, it is important to understand 
what kind of interpretability is needed in a particular application. A black box 
model may suffice if the output was trusted, and trust can be obtained by prospective 
assessment of how often the model’s predictions are correct and calibrated.

Data Quality

Bad data quality adversely affects patient care and outcomes (Jamal et al., 2009). 
A recent systematic review shows that the AI models could dramatically improve if 
four particular adjustments were made: use of multicenter datasets, incorporation of 
time-varying data, assessment of missing data as well as informative censoring, and 
development of metrics of clinical utility (Goldstein et al., 2017). As a reasonable 
starting point for minimizing the data quality issues, data should adhere to the 
FAIR principles in order to maximize the value of the data (Wilkinson et al., 
2016). An often overlooked detail is when and where certain data become available 
and whether the mechanics of data availability and access are compatible with the 
model being constructed. In parallel, we need to educate the different stakeholders, 
and the model builders need to understand the datasets they learn from.

Stakeholder Education and Managing Expectations

The use of AI solutions presents a wide range of legal and ethical challenges, 
which are still being worked out (see Chapter 7). For example, when a physician 
makes decisions assisted by AI, it is not always clear where to place blame in the 
case of failure. This subtlety is not new to recent technological advancements, 
and in fact was brought up decades ago (Berg, 2010). However, most of the legal 
and ethical issues were never fully addressed in the history of computer-assisted 
decision support, and a new wave of more powerful AI-driven methods only adds 
to the complexity of ethical questions (e.g., the frequently condemned black box 
model) (Char et al., 2018).

The model builders need to better understand the datasets they choose to learn 
from. The decision makers need to look beyond technical evaluations and ask for 
utility assessments. The media needs to do a better job in articulating both immense 
potential and the risks of adopting the use of AI in health care. Therefore, it is important 
to promote a measured approach to adopting AI technology, which would further 
AI’s role as augmenting rather than replacing human actors. This framework could 
allow the AI community to make progress while managing evaluation challenges 
(e.g., when and how to employ interpretable models versus black box models) as 
well as ethical challenges that are bound to arise as the technology is widely adopted.
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INTRODUCTION

The effective use of artificial intelligence (AI) in clinical settings currently presents 
an opportunity for thoughtful engagement. There is steady and transformative 
progress in methods and tools needed to manipulate and transform clinical data, 
and increasingly mature data resources have supported novel development of 
accurate and sophisticated AI in some health care domains (although the risk of not 
being sufficiently representative is real). However, few examples of AI deployment 
and use within the health care delivery system exist, and there is sparse evidence 
for improved processes or outcomes when AI tools are deployed (He et al., 2019). 
For example, within machine learning risk prediction models—a subset of the 
larger AI domain—the sizable literature on model development and validation 
is in stark contrast to the scant data describing successful clinical deployment of 
those models in health care settings (Shortliffe and Sepúlveda, 2018).

This discrepancy between development efforts and successful use of AI reflects 
the hurdles in deploying decision support systems and tools more broadly 
(Tcheng et al., 2017). While some impediments are technical, more relate to 
the complexity of tailoring applications for integration with existing capabilities 
in electronic health records (EHRs), poor understanding of users’ needs and 
expectations for information, poorly defined clinical processes and objectives, and 
even concerns about legal liability (Bates, 2012; Miller et al., 2018; Unertl et al., 
2007, 2009). These impediments may be balanced by the potential for gain, as one 
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cross-sectional review of closed malpractice claims found that more than one-half 
of malpractice claims could have been potentially prevented by well-designed 
clinical decision support (CDS) in the form of alerts (e.g., regarding potential 
drug–drug interactions and abnormal test results), reminders, or electronic 
checklists (Zuccotti et al., 2014). Although, in many instances, the deployment 
of AI tools in health care may be conducted on a relatively small scale, it is 
important to recognize that an estimated 50 percent of information technology 
(IT) projects fail in the commercial sector (Florentine, 2016).

Setting aside the challenges of physician-targeted, point-of-care decision 
support, there is great opportunity for AI to improve domains outside of 
encounter-based care delivery, such as in the management of patient populations 
or in administrative tasks for which data and work standards may be more 
readily defined, as is discussed in more detail in Chapter 3. These future priority 
areas will likely be accompanied by their own difficulties, related to translating 
AI applications into effective tools that improve the quality and efficiency of 
health care.

AI tools will also produce challenges that are entirely related to the novelty of 
the technology. Even at this early stage of AI implementation in health care, the 
use of AI tools has raised questions about the expectations of clinicians and health 
systems regarding transparency of the data models, the clinical plausibility of the 
underlying data assumptions, whether AI tools are suitable for discovery of new 
causal links, and the ethics of how, where, when, and under what circumstances 
AI should be deployed (He et al., 2019). At this time in the development cycle, 
methods to estimate the requirements, care, and maintenance of these tools and 
their underlying data needs remain a rudimentary management science.

There are also proposed regulatory rules that will influence the use of AI in 
health care. On July 27, 2018, the Centers for Medicare & Medicaid Services 
(CMS) published a proposed rule that aims to increase Medicare beneficiaries’ 
access to physicians’ services routinely furnished via “communication technology.” 
The rule defines such clinician services as those that are defined by and inherently 
involve the use of computers and communication technology; these services 
will be associated with a set of Virtual Care payment codes (CMS, 2019). These 
services would not be subject to the limitations on Medicare telehealth services 
and would instead be paid under the Physician Fee Schedule, as other physicians’ 
services are. CMS’s evidentiary standard of clinical benefit for determining 
coverage under the proposed rule does not include minor or incidental benefits.

This proposed rule is relevant to all clinical AI applications, because they all 
involve computer and communication technology and aim to deliver substantive 
clinical benefit consistent with the examples set forth by CMS. If clinical AI 
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applications are deemed by CMS to be instances of reimbursable Virtual Care 
services, then it is likely that they would be prescribed like other physicians’ 
services and medical products, and it is likely that U.S.-based commercial payors 
would establish National Coverage Determinations mimicking CMS’s policy. If 
these health finance measures are enacted as proposed, they will greatly accelerate 
the uptake of clinical AI tools and provide significant financial incentives for 
health care systems to do so as well.

In this chapter, we describe the key issues, considerations, and best practices 
relating to the implementation and maintenance of AI within the health care 
system. This chapter complements the preceding discussion in Chapter 5 that is 
focused on considerations at the model creation level within the broader scope of 
AI development. The information presented will likely be of greatest interest to 
individuals within health care systems that are deploying AI or considering doing 
so, and we have limited the scope of this chapter to this audience. National policy, 
regulatory, and legislative considerations for AI are addressed in Chapter 7.

SET TINGS FOR APPLICATION OF AI IN HEALTH CARE

The venues in which health care is delivered, physically or virtually, are 
expanding rapidly, and AI applications are beginning to surface in many if not 
all of these venues. Because there is tremendous diversity in individual settings, 
each of which presents unique requirements, we outline broad categories that are 
germane to most settings and provide a basic framework for implementing AI.

Traditional Point of Care

Decision support generally refers to the provision of recommendations or 
explicit guidance relating to diagnosis or prognosis at the point of care, addressing 
an acknowledged need for assistance in selecting optimal treatments, tests, and 
plans of care along with facilitating processes to ensure that interventions are 
safely, efficiently, and effectively applied.

At present, most clinicians regularly encounter point-of-care tools integrated 
into the EHR. Recent changes in the 21st Century Cures Act have removed 
restrictions on sharing information between users of a specific EHR vendor 
or across vendors’ users and may (in part) overcome restrictions that limited 
innovation in this space. Point-of-care tools, when hosted outside the EHR, are 
termed software as a medical device (SaMD) and may be regulated under the U.S. 
Food and Drug Administration’s (FDA’s) Digital Health Software Precertification 
Program, as is discussed in more detail in Chapter 7 (FDA, 2018; Lee and 
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Kesselheim, 2018). SaMD provided by EHR vendors will not be regulated under 
the Precertification Program, but those supported outside those environments 
and either added to them or provided to patients via separate routes (e.g., apps 
on phones, services provided as part of pharmacy benefit managers) will be. The 
nature of regulation is evolving but will need to account for changes in clinical 
practice, data systems, populations, etc. However, regulated or not, SaMD that 
incorporates AI methods will require careful testing and retesting, recalibration, 
and revalidation at the time of implementation as well as periodically afterward. 
All point-of-care AI applications will need to adhere to best practices for the 
form, function, and workflow placement of CDS and incorporate best practices 
in human–computer interaction and human factors design (Phansalkar et al., 
2010). This will need to occur in an environment where widely adopted EHRs 
continue to evolve and where there will likely be opportunities for disruptive 
technologies.

Clinical Information Processing and Management

Face-to-face interactions with patients are, in a sense, only the tip of the iceberg 
of health care delivery (Blane et al., 2002; Network for Excellence in Health 
Innovation, 2015; Tarlov, 2002). A complex array of people and services are 
necessary to support direct care and they tend to consume and generate massive 
amounts of data. Diagnostic services such as laboratory, pathology, and radiology 
procedures are prime examples and are distinguished by the generation of clinical 
data, including dense imaging, as well as interpretations and care recommendations 
that must be faithfully transmitted to the provider (and sometimes the patient) in 
a timely manner.

AI will certainly play a major role with tasks such as automated image (e.g., 
radiology, ophthalmology, dermatology, and pathology) and signal processing 
(e.g., electrocardiogram, audiology, and electroencephalography). In addition to 
interpretation of tests and images, AI will be used to integrate and array results 
with other clinical data to facilitate clinical workflow (Topol, 2019).

Enterprise Operations

The administrative systems necessary to maintain the clinical enterprise are 
substantial and are likely to grow as AI tools grow in number and complexity. 
In the near term, health care investors and innovators are wagering that AI will 
assume increasing importance in conducting back-office activities in a wide 
variety of areas (Parma, 2018). Because these tasks tend to be less nuanced than 



Deploying Artificial Intelligence in Clinical Settings  |  163

clinical decisions, and usually pose lower risk, it is likely that they may be more 
tractable targets for AI systems to support in the immediate future. In addition, 
the data necessary to train models in these settings are often more easily available 
than in clinical settings. For example, in a hospital, these tasks might include 
the management of billing, pharmacy, supply chain, staffing, and patient flow. 
In an outpatient setting, AI-driven applications could assume some of the 
administrative tasks such as gathering information to assist with decisions about 
insurance coverage, scheduling, and obtaining preapprovals. Some of these topics 
are discussed in greater detail in Chapter 3.

Nontraditional Health Care Settings

Although we tend to think of applying AI in health care locations, such as 
hospital or clinics, there may be greater opportunities in settings where novel 
care delivery models are emerging. This might include freestanding, urgent care 
facilities or pharmacies, or our homes, schools, and workplaces. It is readily possible 
to envision AI deployed in these venues, such as walk-in service in retail vendors, 
or pharmacies with embedded urgent and primary care clinics. Although some of 
these may be considered traditional point-of-care environments, the availability 
of information may be substantially different in these environments. Likewise, 
information synthesis, decision support, and knowledge search support are 
systematically different in these nontraditional health care settings, and thus they 
warrant consideration as a distinct type of environment for AI implementation 
purposes.

Additionally, it is worth noting that AI applications are already in use in many 
nonmedical settings for purposes such as anticipating customers’ purchases and 
managing inventory accordingly. However, these types of tools may be used to 
link health metrics to purchasing recommendations (e.g., suggesting healthier 
food options for patients with hypertension or diabetes) once the ethical consent 
and privacy issues related to use of patient data are addressed (Storm, 2015).

Population Health Management

An increasingly important component of high-quality care falls under the 
rubric of population health management. This poses a challenge for traditional 
health systems because some research suggests that only a small fraction of overall 
health can be attributed to health care (McGinnis et al., 2002) (see Figure 6-1).

Nevertheless, other research suggests that health systems have a major role to 
play in improving population health that can be distinguished from those of 
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FIGURE 6-1 | Determinants of population health.
SOURCE: Figure created with data from McGinnis et al., 2002.

FIGURE 6-2 | Relationship of population health to public health and standard clinical care.
SOURCE: Definition of population health from Kindig, 2007.

traditional medical care and public health systems (see Figure 6-2). Although 
there is no broadly accepted definition of this function within health care delivery 
systems, one goal is to standardize routine aspects of care, typically in an effort to 
improve clinical performance metrics across large populations and systems of care 
with the goal of improving quality and reducing costs.

Promoting healthy behaviors and self-care are major focuses of population 
health management efforts (Kindig and Stoddart, 2003). Much of the work of 
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health management in this context is conducted outside of regular visits and 
often involves more than one patient at a time. AI has the potential to assist with 
prioritization of clinical resources and management of volume and intensity of 
patient contacts, as well as targeting services to patients most likely to benefit. 
In addition, an essential component of these initiatives involves contacting large 
numbers of patients, which can occur through a variety of automated, readily 
scalable methods, such as text messaging and patient portals (Reed et al., 2019). 
One such example in a weight loss program among prediabetic patients is the use 
of Internet-enabled devices with an application to provide educational materials, 
a communication mechanism to their peer group and health coach, and progress 
tracking, which showed that completion of lessons and rate of utilization of 
the tools were strongly correlated with weight loss over multiple years (Sepah 
et al., 2017). Such communication may be as basic as asynchronous messaging 
of reminders to obtain a flu shot (Herrett et al., 2016) or to attend a scheduled 
appointment using secure messaging, automated telephone calls, or postal mail 
(Schwebel and Larimer, 2018). Higher order activities, such as for psychosocial 
support or chronic disease management, might entail use of a dedicated app or 
voice or video modalities, which could also be delivered through encounters 
using telemedicine, reflecting the fluidity and overlap of technological solutions 
(Xing et al., 2019) (see Chapter 3 for additional examples).

Because virtual interactions are typically less complex than face-to-face visits, 
they are likely targets for AI enhancement. Led by efforts in large integrated health 
delivery systems, there are a variety of examples where statistical models derived 
from large datasets have been developed and deployed to predict individuals’ 
intermediate and longer term risk of experiencing adverse consequences of 
chronic conditions including death or hospitalization (Steele et al., 2018). These 
predictions are starting to be used to prioritize provision of care management 
within these populations (Rumsfeld et al., 2016). Massive information synthesis 
is also a key need for this setting, because at-a-glance review of hundreds or 
thousands of patients at the time is typical, which is a task in which AI excels 
(Wahl et al., 2018).

Patient- and Caregiver-Facing Applications

The patient- and caregiver-facing application domain merges health care 
delivery with publicly available consumer hardware and software. It is defined as 
the space in which applications and tools are directly accessible to patients and 
their caregivers. Tools and software in this domain enable patients to manage 
much of their own health care and facilitate interactions between patients and the 
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health care delivery system. In particular, smartphone and mobile applications have 
transformed the potential for patient contact, active participation in health care 
behavior modification, and reminders. These applications also hold the potential 
for health care delivery to access new and important patient data streams to help 
stratify risk, provide care recommendations, and help prevent complications of 
chronic diseases. This trend is likely to blur the traditional boundaries of tasks 
now performed during face-to-face appointments.

Patient- and caregiver-facing tools represent an area of strong potential 
growth for AI deployment and are expected to empower users to assume greater 
control over their health and health care (Topol, 2015). Moreover, there is 
the potential for creating a positive feedback loop where patients’ needs and 
preferences, expressed through their use of AI-support applications, can then 
be incorporated into other applications throughout the health care delivery 
system. As growth of online purchasing continues, the role of AI in direct patient 
interaction—providing wellness, treatment, or diagnostic recommendations via 
mobile platforms—will grow in parallel to that of brick-and-mortar settings. 
Proliferation of these applications will continue to amplify and enhance data 
collected through traditional medical activities (e.g., lab results, pharmacy fill 
data). Mobile applications are increasingly able to cross-link various sources of 
data and potentially enhance health care (e.g., through linking grocery purchase 
data to health metrics to physical steps taken or usage statistics from phones). 
The collection and presentation of AI recommendations using mobile- or 
desktop-based platforms is critical because patients are increasingly engaging 
in self-care activities supported by applications available on multiple platforms. 
In addition to being used by patients, the technology will likely be heavily used 
by their family and caregivers.

Unfortunately, the use of technologies intended to support self-management 
of health by individuals has been lagging as has evaluation of their effectiveness 
(Abdi et al., 2018). Although there are more than 320,000 health apps currently 
available, and these apps have been downloaded nearly 4 billion times, little 
research has been conducted to determine whether they improve health (Liquid 
State, 2018). In a recent overview of systematic reviews of studies evaluating 
stand-alone, mobile health apps, only 6 meta-analyses including a total of 
23 randomized trials could be identified. In all, 11 of the 23 trials showed a 
meaningful effect on health or surrogate outcomes attributable to apps, but 
the overall evidence of effectiveness was deemed to be of very low quality 
(Byambasuren et al., 2018). In addition, there is a growing concern that many 
of these apps share personal health data in ways that are opaque and potentially 
worrisome to users (Loria, 2019).
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APPLICATIONS OF AI IN CLINICAL CARE DELIVERY

Both information generated by medical science and clinical data related to 
patient care have burgeoned to a level at which clinicians are overwhelmed. This 
is a critically important problem because information overload not only leads to 
disaffection among providers but also to medical errors (Tawfik et al., 2018).

Although clinical cognitive science has made advances toward understanding 
how providers routinely access medical knowledge during care delivery and the 
ways in which this understanding could be transmitted to facilitate workflow, this 
has occurred in only very limited ways in practice (Elstein et al., 1978; Kilsdonk 
et al., 2016). However, AI is apt to be integral to platforms that incorporate these 
advances, transforming not only health care delivery but also clinical training and 
education through the identification and delivery of relevant clinical knowledge 
at the point of decision making. Key support tasks would include the intelligent 
search and retrieval of relevant sources of information and customizable display of 
data; these hypothetical AI tools would relieve clinicians of doing this manually as 
is now usually the case (Li et al., 2015). Furthermore, these features would enhance 
the quality and safety of care because important information would be less likely to 
be overlooked. Additionally, AI holds promise for providing point-of-care decision 
support powered by the synthesis of existing published evidence, with the reported 
experiences of similarly diagnosed or treated patients (Li et al., 2015).

Health care is increasingly delivered by teams that include specialists, nurses, 
physician assistants, pharmacists, social workers, case managers, and other health 
care professionals. Each of them brings specialized skills and viewpoints that 
augment and complement the care a patient receives from individual health care 
providers. As the volume of data and information available for patient care grows 
exponentially, innovative solutions empowered by AI techniques will naturally 
become foundational to the care team, providing task-specific expertise in the 
data and information space for advancing knowledge at the point of care.

Risk Prediction

Risk prediction is defined as any algorithm that forecasts a future outcome 
from a set of characteristics existing at a particular time point. It typically entails 
applying sophisticated statistical processes and/or machine learning to large 
datasets to generate probabilities for a wide array of outcomes ranging from 
death or adverse events to hospitalization. These large datasets may include 
dozens, if not hundreds, of variables gathered from thousands, or even millions, 
of patients. Overall, the risk prediction class of applications focuses on assessing 
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the likelihood of the outcome to individuals by applying thresholds of risk. These 
individuals may then be targeted to receive additional or fewer resources in 
terms of surveillance, review, intervention, or follow-up based on some balance 
of expected risk, benefit, and cost. Predictions may be generated for individual 
patients, at a specific point in time (e.g., during a clinical encounter or at hospital 
admission or discharge), or for populations of patients, which identifies a group 
of patients at high risk of an adverse clinical event.

Tools to predict an individual’s risk of a given event have been available for 
decades but due largely to limitations of available data (e.g., small samples or 
claims data without clinical information), the accuracy of the predictions has 
generally been too low for routine use in clinical practice. The advent of large 
repositories of data extracted from clinical records, administrative databases, and 
other sources, coupled with high-performance computing, has enabled relatively 
accurate predictions for individual patients. Reports of predictive tools that have 
C-statistics (areas under curve) exceeding 0.85 or higher are now common (Islam 
et al., 2019). Examples that are currently in use include identifying outpatients, 
including those with certain conditions who are at high risk of hospital admission 
or emergency department visits who might benefit from some type of care 
coordination, or hospitalized patients who are at risk of clinical deterioration 
for whom more intense observation and management are warranted (Kansagara 
et al., 2011; Smith et al., 2014, 2018; Wang et al., 2013).

Given the rapidly increasing availability of sophisticated modeling tools and 
very large clinical datasets, the number of models and prediction targets is growing 
rapidly. Machine learning procedures can sometimes produce greater accuracy than 
standard methods such as logistic regression; however, the improvements may be 
marginal, especially when the number of data elements is limited (Christodoulou 
et al., 2019). These increments may not necessarily compensate for the expense 
of the computing infrastructure required to support machine leaning, particularly 
when the goal is to use techniques in real time. Another issue is that, depending 
on the methods employed to generate a machine learning model, assessing the 
model’s predictive accuracy may not be straightforward. When a model is trained 
simply to provide binary classifications, probabilities are not generated and it may 
be impossible to examine the accuracy of predictions across a range of levels of 
risk. In such instances, it is difficult to produce calibration curves or stratification 
tables, which are fundamental to assessing predictive accuracy, although techniques 
are evolving (Bandos et al., 2009; Kull et al., 2017). Calibration performance has 
been shown to decline quickly, sometimes within 1 year of model development, 
on both derivation and external datasets (Davis et al., 2017), and this will affect 
CDS performance as the sensitivity and specificity of a model value threshold 
changes with calibration performance changes.
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As indicated earlier, it is unlikely that simply making predictive information 
available to clinicians will be an effective strategy. In one example, estimates for 
risk of death and/or hospitalization were generated for more than 5 million 
patients in a very large health care system, using models with C-statistics of 0.85 
or higher. These predictions were provided to more than 7,000 primary care 
clinicians weekly for their entire patient panels in a way that was readily accessible 
through the EHR. Based on usage statistics, however, only about 15 percent of 
the clinicians regularly accessed these reports, even though, when surveyed, those 
who used the reports said that they generally found them accurate (Nelson et al., 
2019). Accordingly, even when they are highly accurate, predictive models are 
unlikely to improve clinical outcomes unless they are tightly linked to effective 
interventions and the recommendations or actions are integrated into clinical 
workflow. Thus, it is useful to think in terms of prediction–action pairs.

In summary, while there is great potential for AI tools to improve on existing 
methods for risk prediction, there are still large challenges in how these tools are 
implemented, how they are integrated with clinical needs and workflows, and how 
they are maintained. Moreover, as discussed in Chapter 1, health care professionals will 
need to understand the clinical, personal, and ethical implications of communicating 
and addressing information about an individual’s risk that may extend far into the 
future, such as predisposition to cancer, cardiovascular disease, or dementia.

Clinical Decision Support

CDS spans a gamut of applications intended to alert clinicians to important 
information and provide assistance with various clinical tasks, which in some 
cases may include prediction. Over the past two decades, CDS has largely 
been applied as rule-driven alerts (e.g., reminders for vaccinations) or alerts 
employing relatively simple Boolean logic based on published risk indices that 
change infrequently over time (e.g., Framingham risk index). More elaborate 
systems have been based upon extensive, knowledge-based applications that assist 
with management of chronic conditions such as hypertension (Goldstein et al., 
2000). Again, with advances in computer science, including natural language 
processing, machine learning, and programming tools such as business process 
modeling notation, case management and notation, and related specifications, 
it is becoming possible to model and monitor more complex clinical processes 
(Object Management Group, 2019). Coupled with information about providers 
and patients, systems will be able to tailor relevant advice to specific decisions and 
treatment recommendations. Other applications may include advanced search 
and analytical capabilities that could provide information such as the outcomes 
of past patients who are similar to those currently receiving various treatments. 



170  |  Artificial Intelligence in Health Care

For example, in one instance, EHR data from nearly 250 million patients were 
analyzed using machine learning to determine the most effective second-line 
hypoglycemic agents (Vashisht et al., 2018).

Image Processing

One of the clinical areas in which AI is beginning to have an important 
early impact is imaging processing. There were about 100 publications on AI in 
radiology in 2005, but that increased exponentially to more than 800 in 2016 and 
2017, related largely to computed tomography, magnetic resonance imaging, and, 
in particular, neuroradiology and mammography (Pesapane et al., 2018). Tasks for 
which current AI technology seems well suited include prioritizing and tracking 
findings that mandate early attention, comparing current and prior images, and 
high-throughput screenings that enable radiologists to concentrate on images 
most likely to be abnormal. Over time, however, it is likely that interpretation of 
routine imaging will be increasingly performed using AI applications.

Interpretation of other types of images by AI are rapidly emerging in other fields 
as well, including dermatology, pathology, and ophthalmology, as noted earlier. 
FDA recently approved the first device for screening for diabetic retinopathy, and 
at least one academic medical center is currently using it. The device is intended 
for use in primary care settings to identify patients who should be referred to 
an ophthalmologist (Lee, 2018). The availability of such devices will certainly 
increase markedly in the near future.

Diagnostic Support and Phenotyping

For nearly 50 years, there have been efforts to develop computer-aided 
diagnosis exemplified by systems such as Iliad, QMR, Internist, and DXplain, 
but none of these programs has been widely adopted. More recent efforts such as 
those of IBM Watson have not been more successful (Palmer, 2018). In part, this 
is a result of a relative lack of major investment as compared to AI applications 
for imaging technology. It also reflects the greater challenges in patient diagnosis 
compared to imaging interpretation. Data necessary for diagnosis arise from 
many sources including clinical notes, laboratory tests, pharmacy data, imaging, 
genomic information, etc. These data sources are often not stored in digital 
formats and generally lack standardized terminology. Also, unlike imaging studies, 
there is often a wide range of diagnostic possibilities, making the problem space 
exponentially larger. Nonetheless, computer-aided diagnosis is likely to evolve 
rapidly in the future.
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Another emerging AI application is the development of phenotyping algorithms 
using data extracted from the EHR and other relevant sources to identify 
individuals with certain diseases or conditions and to classify them according 
to stage, severity, and other characteristics. At present, no common standardized, 
structured, computable format exists for storing phenotyping algorithms, but 
semantic approaches are under development and hold the promise of far more 
accurate characterization of individuals or groups than simply using diagnostic 
codes, as is often done today (Marx, 2015). When linked to genotypes, accurate 
phenotypes will greatly enhance AI tools’ capability to diagnose and understand 
the genetic and molecular basis of disease. Over time, these advances may also 
support the development of novel therapies (Papež et al., 2017).

FRAMEWORK AND CRITERIA FOR AI SELECTION AND 
IMPLEMENTATION IN CLINICAL CARE

As clinical AI applications become increasingly available, health care delivery 
systems and hospitals will need to develop expertise in evaluation, selection, 
and assessment of liability. Marketing of these tools is apt to intensify and be 
accompanied by claims regarding improved clinical outcomes or improved 
efficiency of care, which may or may not be well founded. While the technical 
requirements of algorithm development and validation are covered in Chapter 5, 
this section describes a framework for evaluation, decision making, and adoption 
that incorporates considerations regarding organizational governance and post-
development technical issues (i.e., maintenance of systems) as well as clinical 
considerations that are all essential to successful implementation.

AI Implementation and Deployment as a 
Feature of Learning Health Systems

More than a decade ago, the National Academy of Medicine (NAM) recognized 
the necessity for health systems to respond effectively to the host of challenges 
posed by rising expectations for quality and safety in an environment of rapidly 
evolving technology and accumulating massive amounts of data (IOM, 2011). 
The health system was reimagined as a dynamic system that does not merely 
deliver health care in the traditional manner based on clinical guidelines and 
professional norms, but is continually assessing and improving by harnessing 
the power of IT systems—that is, a system with ongoing learning hardwired 
into its operating model. In this conception, the wealth of data generated in the 
process of providing health care becomes readily available in a secure manner for 
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incorporation into continuous improvement activities within the system and for 
research to advance health care delivery in general (Friedman et al., 2017). In this 
manner, the value of the care that is delivered to any individual patient imparts 
benefit to the larger population of similar patients. To provide context for how 
the learning health system (LHS) is critical for how to consider AI in health 
care, we have referenced 10 recommendations from a prior NAM report in this 
domain, and aligned them with how AI could be considered within the LHS for 
each of these key recommendation areas (see Table 6-1).

Clearly listed as 1 of the 10 priorities is involvement of patients and families, 
which should occur in at least two critically important ways. First, they need 
to be informed, both generally and specifically, about how AI applications are 
being integrated into the care they receive. Second, AI applications provide 
an opportunity to enhance engagement of patients in shared decision making. 
Although interventions to enhance shared decision making have not yet shown 
consistently beneficial effects, these applications are very early in development 
and have great potential (Légaré et al., 2018).

The adoption of AI technology provides a sentinel opportunity to advance 
the notion of LHSs. AI requires the digital infrastructure that enables the LHS 
to operate and, as described in Table 6-1, AI applications can be fundamentally 
designed to facilitate evaluation and assessment. One large health system in the 
United States has proclaimed ambitious plans to incorporate AI into “every patient 
interaction, workflow challenge and administrative need” to “drive improvements 
in quality, cost and access,” and many other health care delivery organizations and 
IT companies share this vision, although it is clearly many years off (Monegain, 
2017). As AI is increasingly embedded into the infrastructure of health care 
delivery, it is mandatory that the data generated be available not only to evaluate 
the performance of AI applications themselves, but also to advance understanding 
about how our health care systems are functioning and how patients are faring.

Institutional Readiness and Governance

For AI deployment in health care practice to be successful, it is critical that the 
life cycle of AI use be overseen through effective governance. IT governance is 
the set of processes that ensure the effective and efficient use of IT in enabling 
an organization to achieve its goals. At its core, governance defines how an 
organization manages its IT portfolio (e.g., financial and personnel) by overseeing 
the effective evaluation, selection, prioritization, and funding of competing IT 
projects, ensuring their successful implementation, and tracking their performance. 
In addition, governance is responsible for ensuring that IT systems operate in an 
effective, efficient, and compliant fashion.
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TABLE 6-1 | Leveraging Artificial Intelligence Tools into a Learning Health System 

Topic

Institute of Medicine 
Learning Health System 
Recommendation

Mapping to Artificial 
Intelligence in Health Care

Foundational Elements

Digital 
infrastructure

Improve the capacity to capture 
clinical, care delivery process, and 
financial data for better care, system 
improvement, and the generation 
of new knowledge.

Improve the capacity for unbiased, representative 
data capture with broad coverage for data elements 
needed to train artificial intelligence (AI).

Data utility Streamline and revise research 
regulations to improve care, 
promote and capture clinical data, 
and generate knowledge.

Leverage continuous quality improvement (QI) 
and implement scientific methods to help select 
when AI tools are the most appropriate choice 
to optimize clinical operations and harness AI 
tools to support continuous improvement.

Care Improvement Targets

Clinical decision 
support

Accelerate integration of the 
best clinical knowledge into care 
decisions.

Accelerate integration of AI tools into clinical 
decision support applications.

Patient-centered 
care

Involve patients and families 
in decisions regarding health and 
health care, tailored to fit their 
preferences.

Involve patient and families in how, when, 
and where AI tools are used to support care 
in alignment with preferences.

Community 
links

Promote community–clinical 
partnerships and services aimed 
at managing and improving health 
at the community level.

Promote use of AI tools in community and 
patient health consumer applications in a 
responsible, safe manner.

Care continuity Improve coordination and 
communication within and across 
organizations.

Improve AI data inputs and outputs through 
improved card coordination and data 
interchange.

Optimized 
operations

Continuously improve health care 
operations to reduce waste, streamline 
care delivery, and focus on activities 
that improve patient health.

Leverage continuous QI and Implementation 
Science methods to help select when AI tools 
are the most appropriate choice to optimize 
clinical operations.

Policy Environment

Financial 
incentives

Structure payment to reward 
continuous learning and 
improvement in the provision of 
best care at lower cost.

Use AI tools in business practices to optimize 
reimbursement, reduce cost, and (it is hoped) 
do so at a neutral or positive balance on 
quality of care.

Performance 
transparency

Increase transparency on health 
care system performance.

Make robust performance characteristics for 
AI tools transparent and assess them in the 
populations within which they are deployed.

Broad 
leadership

Expand commitment to the goals 
of a continuously learning health 
care system.

Promote broad stakeholder engagement and 
ownership in governance of AI systems in 
health care.

NOTE: Recommendations from Best Care at Lower Cost (IOM, 2013) for a Learning Health System (LHS) in 
the first two columns are aligned with how AI tools can be leveraged into the LHS in the third column.
SOURCE: Adapted with permission from IOM, 2013.
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Another facet of IT governance that is relevant to AI is data governance, which 
institutes a methodical process that an organization adopts to manage its data and 
ensure that the data meet specific standards and business rules before entering them 
into a data management system. Given the intense data requirements of many AI 
applications, data governance is crucial and may also expand to data curation 
and privacy-related issues. Capabilities such as SMART on FHIR (Substitutable 
Medical Apps, Reusable Technology on Fast Healthcare Interoperability 
Resource) are emerging boons for the field of AI but may exacerbate problems 
related to the need for data to be exchanged from EHRs to external systems, 
which in turn create issues related to the privacy and security of data. Relatedly, 
organizations will also need to consider other ethical issues associated with data 
use and data stewardship (Faden, 2013). In recent years, much has been written 
about patient rights and preferences as well as how the LHS is a moral imperative 
(Morain et al., 2018). Multiple publications and patient-led organizations have 
argued that the public is willing to share data for purposes that improve patient 
health and facilitate collaboration with data and medical expertise (Wicks et al., 
2018). In other words, these publications suggest that medical data should be 
understood as a “public good” (Kraft et al., 2018). It is critical for organizations 
to build on these publications and develop appropriate data stewardship models 
that ensure that health data are used in ways that align with patients’ interests and 
preferences. Of particular note is the fact that not all patients and/or family have 
the same level of literacy, privilege, and understanding of how their data might 
be used or monetized, and the potential unintended consequences of privacy and 
confidentiality.

A health care enterprise that seeks to leverage AI should consider, characterize, 
and adequately resolve a number of key considerations prior to moving forward with 
the decision to develop and implement an AI solution. These key considerations 
are listed in Table 6-2 and are expanded further in the following sections.

Organizational Approach to Implementation

After the considerations delineated in the previous section have been resolved 
and a decision has been made to proceed with the adoption of an AI application, 
the organization requires a systematic approach to implementation. Frameworks 
for conceptualizing, designing, and evaluating this process are discussed below, but 
all implicitly incorporate the most fundamental basic health care improvement 
model, often referred to as a plan-do-study-act (PDSA) cycle. This approach was 
introduced more than two decades ago by W. E. Deming, the father of modern 
quality improvement (Deming, 2000). The PDSA cycle relies on the intimate 



Deploying Artificial Intelligence in Clinical Settings  |  175

TABLE 6-2 | Key Considerations for Institutional Infrastructure and Governance 

Consideration Relevant Governance Questions

Organizational 
capabilities

Does the organization possess the necessary technological 
(e.g., information technology [IT] infrastructure, IT personnel) and 
organizational (knowledgeable and engaged workforce, education, 
and training) capabilities to adopt, assess, and maintain artificial 
intelligence (AI)-driven tools?

Data environment What data are available for AI development? Do current systems 
possess the adequate capacity for storage, retrieval, and transmission 
to support AI tools?

Interoperability Does the organization support and maintain data at rest and in motion 
according to national and local standards for interoperability (e.g., 
SMART on FHIR [Substitutable Medical Apps, Reusable Technology 
on Fast Healthcare Interoperability Resource])?

Personnel capacity What expertise exists in the health care system to develop and 
maintain the AI algorithms?

Cost, revenue, and value What will be the initial and ongoing costs to purchase and 
install AI algorithms and to train users to maintain underlying data 
models and to monitor for variance in model performance?

Is there an anticipated return on investment from the AI deployment?

What is the perceived value for the institution related to AI deployment?

Safety and efficacy 
surveillance

Are there governance and processes in place to provide regular 
assessments of the safety and efficacy of AI tools?

Patient, family, consumer 
engagement

Does the institution have in place formal mechanisms for patient, 
family, or consumer, such as a council or advisory board, that can 
engage and voice concerns on relevant issues related to implementation, 
evaluation, etc.?

Cybersecurity and 
privacy

Does the digital infrastructure for health care data in the enterprise 
have sufficient protections in place to minimize the risk of breaches of 
privacy if AI is deployed?

Ethics and fairness Is there an infrastructure in place at the institution to provide oversight 
and review of AI tools to ensure that the known issues related to ethics and 
fairness are addressed and that vigilance for unknown issues is in place?

Regulatory issues 
(see Chapter 7)

Are there specific regulatory issues that must be addressed and, if so, 
what type of monitoring and compliance programs will be necessary?

participation of employees involved in the work, detailed understanding of 
workflows, and careful ongoing assessment of implementation that informs iterative 
adjustments. Newer methods of quality improvement introduced since Deming 
represent variations or elaborations of this approach. All too often, however, quality 
improvement efforts frequently fail because they are focused narrowly on a given 
task or set of tasks using inadequate metrics without due consideration of the 
larger environment in which change is expected to occur (Muller, 2018).
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Such concerns are certainly relevant to AI implementation. New technology 
promises to substantially alter how medical professionals currently deliver health 
care at a time when morale in the workforce is generally poor (Shanafelt et al., 
2012). One of the challenges of the use of AI in health care is that integrating it 
within the EHR and improving existing decision and workflow support tools 
may be viewed as an extension of an already unpopular technology (Sinsky et al., 
2016). Moreover, there are a host of concerns that are unique to AI, some well 
and others poorly founded, which might add to the difficulty of implementing 
AI applications.

In recognition that basic quality improvement approaches are generally inadequate 
to produce large-scale change, the field of implementation science has arisen 
to characterize how organizations can undertake change in a systematic fashion 
that acknowledges their complexity. Some frameworks are specifically designed 
for evaluating the effectiveness of implementation, such as the Consolidated 
Framework for Implementation Research or the Promoting Action on Research 
Implementation in Health Services (PARiHS). In general, these governance and 
implementation frameworks emphasize sound change management and methods 
derived from implementation science that undoubtedly apply to implementation 
of AI tools (Damschroder et al., 2009; Rycroft-Malone, 2004).

Nearly all approaches integrate concepts of change management and 
incorporate the basic elements that should be familiar because they are routinely 
applied in health care improvement activities. These concepts, and how they are 
adapted to the specific task of AI implementation, are included in Table 6-3.

It must be recognized that even when these steps are taken by competent 
leadership, the process may not proceed as planned or expected. Health care 
delivery organizations are typically large and complex. These concepts of how 
to achieve desired changes successfully continue to evolve and increasingly 
acknowledge the powerful organizational factors that inhibit or facilitate change 
(Braithwaite, 2018).

Developmental Life Cycle of AI Applications

As is the case with any health care improvement activity, the nature of the 
effort is cyclical and iterative, as is summarized in Figure 6-3. As discussed earlier, 
the process begins with clear identification of the clinical problem or need to be 
addressed. Often the problem will be one identified by clinicians or administrators 
as a current barrier or frustration or as an opportunity to improve clinical or 
operational processes. Even so, it is critical for the governance process to delineate 
the extent and magnitude of the issue and ensure that it is not idiosyncratic 
and that there are not simpler approaches to addressing the problem, rather than 
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TABLE 6-3 | Key Artificial Intelligence (AI) Tool Implementation Concepts, Considerations, 
and Tasks Translated to AI-Specific Considerations 

Implementation Task or Concept Artificial Intelligence Relevant Aspects

Identifying the clinical or administrative problem 
to be addressed.

Consideration of the problem to be addressed 
should precede and be distinct from the selection 
and implementation of specific technologies, 
such as AI systems.

Assessing organizational readiness for change, 
which may entail surveying individuals 
who are likely to be affected. An example would 
be the Organizational Readiness to Change 
Assessment tool based on the Promoting 
Action on Research Implementation in Health 
Services framework (Helfrich et al., 2009).

It is important to include clinicians, information 
technology (IT) professionals, data scientists, and 
health care system leadership. These stakeholders 
are essential to effective planning for organizational 
preparation for implementing an AI solution.

Achieving consensus among stakeholders that the 
problem is important and relevant and providing 
persuasive information that the proposed solution 
is likely to be effective if adopted.

It is important to include clinicians, IT professionals, 
data scientists, and health care system leadership. 
These stakeholders are essential to effective planning 
for organizational preparation for implementing an 
AI solution.

When possible, applying standard organizational 
approaches that will be familiar to staff 
and patients without undue rigidity and 
determining what degree of customization 
will be permitted.

For AI technologies, this includes developing and 
adopting standards for approaches for how data are 
prepared, models are developed, and performance 
characteristics are reported. In addition, using 
standard user interfaces and education surrounding 
these technologies should be considered.

When possible, defining how adoption will 
improve workflow, patient outcomes, or 
organizational efficiency.

When possible, explicitly state and evaluate a value 
proposition, and, as important, assess the likelihood 
and magnitude of improvements with and without 
implementation of AI technologies.

Securing strong commitment from senior 
organizational leadership.

Typically, this includes organizational, clinical, IT 
and financial leaders for establishing governance and 
organizational prioritization strategies and directives.

Identifying strong local leadership, typically in 
the form of clinical champions and thought 
leaders.

Each AI system placed into practice needs a clinical 
owner(s) who will be the superusers of the tools, 
champion them, and provide early warning when 
these tools are not performing as expected.

Engaging stakeholders in developing a plan for 
implementation that is feasible and acceptable 
to users and working to identify offsets if 
the solution is likely to require more work 
on the part of users.

It is critical that AI tools be implemented in an 
environment incorporating user-centered design 
principles, and with a goal of decreasing user 
workload, either time or cognition. This requires 
detailed implementation plans that address changes 
in workflow, data streams, adoption or elimination 
of equipment if necessary, etc.

Providing adequate education and technical 
support during implementation.

Implementation of AI tools in health care settings 
should be done in concert with educational initiatives 
and both clinical champion and informatics/IT support 
that ideally is available immediately and capable of 
evaluating and remedying problems that arise.

continued
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Implementation Task or Concept Artificial Intelligence Relevant Aspects

Managing the unnecessary complexity that arises 
from the “choices” in current IT systems.

Identify and implement intuitive interfaces and 
optimal workflows through a user-centered design 
process.

Defining clear milestones, metrics, and outcomes 
to determine whether an implementation is 
successful.

The desirable target state for an AI application 
should be clearly stated, defined in a measurable 
way, and processes, such as automation or analytics, 
put into place to collect, analyze, and report this 
information in a timely manner.

Conducting after-action assessments that will 
inform further implementation efforts.

It is important to leverage the human–computer 
interaction literature to assess user perceptions, 
barriers, and lessons learned during implementation 
of AI tools and systems.

TABLE 6-3 | Continued

FIGURE 6-3 | Developmental life cycle of artificial intelligence applications.

undertaking a major IT project. It is essential to delineate existing workflows, 
and this usually entails in-depth interviews with staff and direct observation that 
assist with producing detailed flowcharts (Nelson et al., 2011). It is also important 
to define the desired outcome state, and all feasible options for achieving that 
outcome should be considered and compared. In addition, to the greatest extent 
feasible, at each relevant step in the development process, input should be sought 
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from other stakeholders such as patients, end users, and members of the public. 
Although AI applications are currently a popular topic and new products are 
being touted, it is important to recall that the field is near the peak of the Gartner 
Hype Cycle (see Chapter 4), and some solutions are at risk for overpromising the 
achievable benefit. Thus, it is likely that early adopters will spend more and realize 
less value than organizations that are more strategic and, perhaps, willing to defer 
investments until products are more mature and have been proven. Ultimately, 
it will be necessary for organizations to assess the utility of an AI application 
in terms of the value proposition. For example, in considering adoption of an 
AI application for prediction, it is possible that in certain situations, given the 
cost, logistical complexity, and efficacy of the action, there may not be feasible 
operating zones in which a prediction–action pair, as described below, has clinical 
utility. Therefore, assessing the value proposition of deploying AI in clinical 
settings has to include the utility of downstream actions triggered by the system 
along with the frequency, cost, and logistics of those actions.

Components of a Clinical Validation and Monitoring Program 
for AI Tools

The clinical validation of AI tools should be viewed as distinct from the technical 
validation described in Chapter 5. For AI, clinical validation has two key axes:

1.  Application of traditional medical hierarchy of evidence to support adoption 
and continued use of the AI tool. The hierarchy categorizes pilot data as the 
lowest level of evidence, followed by observational, risk-adjusted assessment 
results, and places results of clinical trials at the top of the classification 
scheme.

2.  Alignment of the AI target with the desired clinical state. For example, simply 
demonstrating a high level of predictive accuracy may not ensure improved 
clinical outcomes if effective interventions are lacking, or if the algorithm is 
predicting a change in the requirements of a process or workflow that may not 
have a direct link to downstream outcome achievements. Thus, it is critically 
important to define prediction–action pairs. Actions should generally not be 
merely improvements in information knowledge but should be defined by 
specific interventions that have been shown to improve outcomes.

Given the novelty of AI, the limited evidence of its successful use to date, the 
limited regulatory frameworks around it, and that most AI tools depend on nuances 
of local data—and the clinical workflows that generate these data—ongoing 
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monitoring of AI as it is deployed in health care is critical for ensuring its safe and 
effective use. The basis for ongoing evaluation should be on prediction–action 
pairs, as discussed earlier in this chapter, and should involve assessment of factors 
such as

• how often the AI tool is accessed and used in the process of care;
•  how often recommendations are accepted and the frequency of overrides 

(with reasons if available);
•  in settings where the data leave the EHR, logs of data access, application 

programming interface (API) calls, and privacy changes;
•  measures of clinical safety and benefit, optimally in the form of agreed-upon 

outcome or process measures;
•  organizational metrics relevant to workflow or back-office AI;
•  user-reported issues, such as perceived inaccurate recommendations, untimely 

or misdirected prompts, or undue distractions;
•  records of ongoing maintenance work (e.g., data revision requests); and
•  model performance against historical data (e.g., loss of model power due to 

changes in documentation).

Clinical Outcome Monitoring

The complexity and extent of local evaluation and monitoring may necessarily 
vary depending on the way AI tools are deployed into the clinical workflow, the 
clinical situation, and the type of CDS being delivered, as these will in turn define 
the clinical risk attributable to the AI tool.

The International Medical Device Regulators Forum (IMDRF) framework 
for assessing risk of SaMD is a potentially useful approach to developing SaMD 
evaluation monitoring strategies tailored to the level of potential risk posed by the 
clinical situation where the SaMD is employed. Although the IMRDF framework 
is currently used to identify SaMD that require regulation, its conceptual model is 
one that might be helpful in identifying the need for evaluating and monitoring 
AI tools, both in terms of local governance and larger studies. The IMDRF 
framework focuses on the clinical acuity of the location of care (e.g., intensive 
care unit versus general preventive care setting), type of decision being suggested 
(immediately life-threatening versus clinical reminder), and type of decision 
support being provided (e.g., interruptive alert versus invisible “nudge”). In 
general, the potential need for evaluation rises in concert with the clinical setting 
and decision acuity, and as the visibility of the CDS falls (and the opportunity for 
providers to identify and catch mistakes becomes lower).
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For higher risk AI tools, a focus on clinical safety and effectiveness—from either 
a noninferiority or superiority perspective—is of paramount importance even as 
other metrics (e.g., API data calls, user experience information) are considered. 
High-risk tools will likely require evidence from rigorous studies for regulatory 
purposes and will certainly require substantial monitoring at the time of and 
following implementation. For low-risk clinical AI tools used at point of care, or 
those that focus on administrative tasks, evaluation may rightly focus on process-
of-care measures and metrics related to the AI’s usage in practice to define its 
positive and negative effects. We strongly endorse implementing all AI tools using 
experimental methods (e.g., randomized controlled trials or A/B testing) where 
possible. Large-scale pragmatic trials at multiple sites will be critical for the field 
to grow but may be less necessary for local monitoring and for management of 
an AI formulary. In some instances, due to feasibility, costs, time constraints, or 
other limitations, a randomized trial may not be practical or feasible. In these 
circumstances, quasi-experimental approaches such as stepped-wedge designs or 
even carefully adjusted retrospective cohort studies may provide valuable insights. 
Monitoring outcomes after implementation will permit careful assessment, in 
the same manner that systems regularly examine drug usage or order sets and 
may be able to utilize data that are innately collected by the AI tool itself to 
provide a monitoring platform. Recent work has revealed that naive evaluation 
of AI system performance may be overly optimistic, providing a need for more 
thorough evaluation and validation.

In one such study (Zech et al., 2018), researchers evaluated the ability of a 
clinical AI application that relied on imaging data to generalize across hospitals. 
Specifically, they trained a neural network to diagnose pneumonia from patient 
radiographs in one hospital system and evaluated its diagnostic ability on external 
radiographs from different hospital systems, with their results showing that 
performance on external datasets was significantly degraded. The AI application 
was unable to generalize across hospitals due to differences between the training 
data and evaluation data, a well-known but often ignored problem termed 
dataset shift (Quiñonero-Candela et al., 2009; Saria and Subbaswamy, 2019). In 
this instance, Zech and colleagues (2018) showed that large differences in the 
prevalence of pneumonia between populations caused performance to suffer. 
However, even subtle differences between populations can result in significant 
performance changes (Saria and Subbaswamy, 2019). In the case of radiographs, 
differences between scanner manufacturers or type of scanner (e.g., portable 
versus nonportable) result in systematic differences in radiographs (e.g., inverted 
color schemes or inlaid text on the image). Thus, in the training process, an 
AI system can be trained to very accurately determine which hospital system 
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(and even which department within the system) a particular radiograph came 
from (Zech et al., 2018) and to use that information in making its prediction, 
rather than using more generalizable patient-based data.

Clinical AI performance can also deteriorate within a site when practices, 
patterns, or demographics change over time. As an example, consider the policy 
by which physicians order blood lactate measurements. Historically, it may have 
been the case that, at a particular hospital, lactate measurements were only ordered 
to confirm suspicion of sepsis. A clinical AI tool for predicting sepsis that was 
trained using historical data from this hospital would be vulnerable to learning 
that the act of ordering a lactate measurement is associated with sepsis rather 
than the elevated value of the lactate. However, if hospital policies change and 
lactate measurements are more commonly ordered, then the association that had 
been learned by the clinical AI would no longer be accurate. Alternatively, if the 
patient population shifts, for example, to include more drug users, then elevated 
lactate might become more common and the value of lactate being measured 
would again be diminished. In both the case of changing policy and of patient 
population, performance of the clinical AI application is likely to deteriorate, 
resulting in an increase of false-positive sepsis alerts.

More broadly, such examples illustrate the importance of careful validation 
in evaluating the reliability of clinical AI. A key means for measuring reliability 
is through validation on multiple datasets. Classical algorithms that are applied 
natively or used for training AI are prone to learning artifacts specific to the site 
that produced the training data or specific to the training dataset itself. There 
are many subtle ways that site-specific or dataset-specific bias can occur in real-
world datasets. Validation using external datasets will show reduced performance 
for models that have learned patterns that do not generalize across sites (Schulam 
and Saria, 2017). Other factors that could influence AI prediction might include 
insurance coverage, discriminatory practices, or resource constraints. Overall, 
when there are varying, imprecise measurements or classifications of outcomes 
(i.e., labeling cases and controls), machine learning methods may exhibit what 
is known as causality leakage (Bramley, 2017) and label leakage (Ghassemi 
et al., 2018). An example of causality leakage in a clinical setting would be 
when a clinician suspects a problem and orders a test, and the AI uses the test 
itself to generate an alert, which then causes an action. Label leakage is when 
information about a targeted task outcome leaks back into the features used to 
generate the model.

While external validation can reveal potential reliability issues related to 
clinical AI performance, external validation is reactive in nature because 
differences between training and evaluation environments are found after the 
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fact due to degraded performance. It is more desirable to detect and prevent 
problems proactively to avoid failures prior to or during training. Recent work 
in this direction has produced proactive learning methods that train clinical 
AI applications to make predictions that are invariant to anticipated shifts in 
populations or datasets (Schulam and Saria, 2017). For example, in the lactate 
example, above, the clinical AI application can learn a predictive algorithm that 
is immune to shifts in practice patterns (Saria and Subbaswamy, 2019). Doing 
so requires adjusting for confounding, which is only sometimes possible, for 
instance, when the data meet certain quality requirements. When they can be 
anticipated, these shifts can be prespecified by model developers and included in 
documentation associated with the application. By refraining from incorporating 
learning predictive relationships that are likely to change, performance is more 
likely to remain robust when deployed at new hospitals or under new policy 
regimes. Beyond proactive learning, these methods also provide a means for 
understanding susceptibility to shifts for a given clinical AI model (Subbaswamy 
and Saria, 2018; Subbaswamy et al., 2019). Such tools have the potential to prevent 
failures if implemented during the initial phase of approval.

In addition to monitoring overall measures of performance, evaluating 
performance on key patient subgroups can further expose areas of model 
vulnerability: High average performance overall is not indicative of high 
performance across every relevant subpopulation. Careful examination of 
stratified performance can help expose subpopulations where the clinical AI 
model performs poorly and therefore poses higher risk. Furthermore, tools 
that detect individual points where the clinical AI is likely to be uncertain or 
unreliable can flag anomalous cases. By introducing a manual audit for these 
individual points, one can improve reliability during use (e.g., Schulam and Saria, 
2019; Soleimani et al., 2018). Traditionally, uncertainty assessment was limited to 
the use of specific classes of algorithms for model development. However, recent 
approaches have led to wrapper tools that can audit some black box models 
(Schulam and Saria, 2019). Logging cases flagged as anomalous or unreliable and 
performing a review of such cases from time to time may be another way to 
bolster postmarketing surveillance, and FDA requirements for such surveillance 
could require such techniques.

AI Model Maintenance

As discussed above, there is a large body of work indicating that model 
performance—whether AI or traditional models—degrades when models are 
applied to another health care system with systematic differences from the system 
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where it was derived (Koola et al., 2019). Deterioration of model performance 
can also occur within the same health care system over time, as clinical care 
environments evolve due to changes in background characteristics of the patients 
being treated, overall population rates of exposures and outcomes of interest, and 
clinical practice as new evidence is generated (Davis et al., 2017; Steyerberg et al., 
2013). In addition, systematic data shifts can occur if the implementation of AI 
itself changes clinical care (Lenert et al., 2019).

There are a number of approaches used to account for systematic changes 
in source data use by AI applications that have largely been adapted from more 
traditional statistical methods applied to risk models (Moons et al., 2012). These 
methods range from completely regenerating models on a periodic basis to 
recalibrating models using a variety of increasingly complex methods. However, 
there are evolving areas of research into how frequently to update, what volume 
and types of data are necessary for robust performance maintenance, and how to 
scale these surveillance and updating activities across what is anticipated to be 
a high volume of algorithms and models in clinical practice (Davis et al., 2019; 
Moons et al., 2012). Some of the risks are analogous to those of systems in which 
Boolean rule–based CDS tools were successfully implemented, but the continual 
addition of reminders and CDS in an EHR based on guidelines becomes 
unsustainable (Singh et al., 2013). Without automation and the appropriate 
scaling and standardization of knowledge, management systems for these types of 
CDS will face severe challenges.

AI AND INTERPRETABILIT Y

A lack of transparency and interpretability in AI-derived recommendations is 
one issue that has received considerable visibility and has often been cited as a 
limitation for use of AI in clinical applications. Lack of insight into methods and 
data employed to develop and operate AI models tends to provoke clinicians’ 
questions about the clinical plausibility of the tools, the extent to which the 
tools can provide clinical justification and reassurance to the patient and 
provider making care decisions, and potential liability, including implications for 
insurance coverage. In addition, there is a tendency to question whether observed 
associations utilized within the model can be used to identify specific clinical or 
system-level actions that should be taken, or whether they can reveal novel and 
unsuspected underlying pathophysiologies. These issues are particularly complex 
as they relate to risk prediction models that can readily be validated in terms of 
predictive accuracy but for which the inclusion of data elements may not be 
based on biological relationships.
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Requirements for interpretability are likely to be determined by a number of 
factors, including

• medical liability and federal guidelines and recommendations for how AI is to 
be used in health care;

•  the medical profession’s and the public’s increasing trust in their reliance on AI 
to manage clinical information;

•  AI tools’ effect on current human interactions and design, which may 
be prepared for to some extent through advance planning for appropriate 
adoption and implementation into current workflows (Dudding et al., 2018; 
Hatch et al., 2018; Lynch et al., 2019; Wachter, 2015); and

•  Expectations of the general public regarding the safety and efficacy of these 
systems.

One area of active innovation is the synthesis and display of where and how AI 
outputs are presented to the end user, in many cases to assist in interpretability. 
Innovations include establishing new methods, such as parallel models where one 
is used for core computation and the other for interpretation (Hara and Hayashi, 
2018; Krause et al., 2016; Turner, 2016). Others utilize novel graphical displays 
and data discovery tools that sit alongside the AI to educate and help users in 
health care settings as they become comfortable using the recommendations.

There remains a paradox, however, because machine learning produces 
algorithms based upon features that may not be readily interpretable. In the 
absence of absolute transparency, stringent standards for performance must be 
monitored and ensured. We may not understand all of the components upon 
which an algorithm is based, but if the resulting recommendations are highly 
accurate, and if surveillance of the performance of the AI system over time is 
maintained, then we might continue to trust it to perform the assigned task. A 
burgeoning number of applications for AI in the health care system do not assess 
end users’ needs for the level of interpretability. Although the most stringent 
criteria for transparency are within the point-of-care setting, there are likely 
circumstances under which accuracy may be desired over transparency. Regardless 
of the level of interpretability of the outputs of the AI algorithms, considerations 
for users’ requirements should be addressed during development. With this in 
mind, there are a few key factors related to the use and adoption of AI tools that 
are algorithmically nontransparent but worthy of consideration by clinicians and 
health care delivery systems.

Although the need for algorithm transparency at a granular level is probably 
overstated, descriptors of how data were collected and aggregated are essential, 
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comparable to the inclusion/exclusion criteria of a clinical trial. For models 
that seek to produce predictions only (i.e., suggest an association between 
observable data and an outcome), at a minimum we believe that it is important 
to know the populations for which AI is not applicable. This will make informed 
decisions about the likely accuracy of use in specific situations possible and help 
implementers avoid introducing systematic errors related to patient socioeconomic 
or documentation biases. For example, implementers might consider whether 
the data were collected in a system similar to their own. The generalizability 
of data sources is a particularly important consideration when evaluating the 
suitability of an AI tool, because those that use data or algorithms that have been 
derived outside the target environment are likely to be misapplied. This applies 
to potential generalizability limitations among models derived from patient data 
within one part of a health system and then spread to other parts of that system.

For models that seek to suggest therapeutic targets or treatments—and thus 
imply a causal link or pathway—a higher level of scrutiny of the data assumptions 
and model approaches should be required. Closer examination is required 
because these results are apt to be biased by the socioeconomic and system-
related factors mentioned above as well as by well-described issues such as 
allocation and treatment biases, immortal time biases, and documentation biases. 
At present, AI tools are incapable of accounting for these biases in an unsupervised 
fashion. Therefore, for the foreseeable future, this class of AI tools will require 
robust, prospective study before deployment locally and may require repeated 
recalibrations and reevaluation when expanded outside their original setting.

Risk of a Digital Divide

It should be evident from this chapter that in this early phase of AI development, 
adopting this technology requires substantial resources. Because of this barrier, 
only well-resourced institutions may have access to AI tools and systems, while 
institutions that serve less affluent and disadvantaged individuals will be forced to 
forgo the technology. Early on, when clinical AI remains in rudimentary stages, 
this may not be terribly disadvantageous. However, as the technology improves, 
the digital divide may widen the significant disparities that already exist between 
institutions. This would be ironic because AI tools have the potential to improve 
quality and efficiency where the need is greatest. An additional potential risk 
is that AI technology may be developed in environments that exclude patients 
of different socioeconomic, cultural, and ethnic backgrounds, leading to poorer 
performance in some groups. Early in the process of AI development, it is 
critical that we ensure that this technology is derived from data gathered from 
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diverse populations and that it be made available to affluent and disadvantaged 
individuals as it matures.

KEY CONSIDERATIONS

As clinical AI applications become increasingly available, marketing of these 
tools is apt to intensify and be accompanied by claims regarding improved clinical 
outcomes or improved efficiency of care, which may or may not be well founded. 
Health care delivery systems and hospitals will need to take a thoughtful approach 
in the evaluation, decision making, and adoption of these tools that incorporates 
considerations regarding organizational governance and postdevelopment 
technical issues (i.e., maintenance of systems) as well as clinical considerations 
that are all essential to successful implementation.

Effective IT governance is essential for successful deployment of AI applications. 
Health systems must create or adapt their general IT governance structures to 
manage AI implementation.

• The clinical and administrative leadership of health care systems, with input 
from all relevant stakeholders such as patients, end users, and the general 
public, must define the near- and far-term states that would be required to 
measurably improve workflow or clinical outcomes. If these target states are 
clearly defined, AI is likely to positively affect the health care system through 
efficient integration into the EHR, population health programs, and ancillary 
and allied health workflows.

•  Before deploying AI, health systems should assess through stakeholder and user 
engagement, especially patients, consumers, and the general public, the degree 
to which transparency is required for AI to operate in a particular use case. This 
includes determining cultural resistance and workflow limitations that may dictate 
key interpretability and actionability requirements for successful deployment.

•  Through IT governance, health systems should establish standard processes for 
the surveillance and maintenance of AI applications’ performance and, if at all 
possible, automate those processes to enable the scalable addition of AI tools 
for a variety of use cases.

•  IT governance should engage health care system leadership, end users, and 
target patients to establish a value statement for AI applications. This will 
include analyses to ascertain the potential cost savings and/or clinical outcome 
gains from implementation of AI.

•  AI development and implementation should follow established best-practice 
frameworks in implementation science and software development.
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•  Because it remains in early developmental stages, health systems should 
maintain a healthy skepticism about the advertised benefits of AI. Systems that 
do not possess strong research and advanced IT capabilities should likely not 
be early adopters of this technology.

•  Health care delivery systems should strive to adopt and deploy AI applications 
in the context of a learning health system.

•  Efforts to avoid introducing social bias in the development and use of AI 
applications are critical.
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HEALTH CARE ARTIFICIAL INTELLIGENCE:  
LAW, REGULATION, AND POLICY

Douglas McNair, Bill & Melinda Gates Foundation; and 
W. Nicholson Price II, University of Michigan Law School

INTRODUCTION

As discussed in previous chapters, artificial intelligence (AI) has the potential to 
be involved in almost all aspects of the health care industry. The legal landscape for 
health care AI is complex; AI systems with different intended uses, audiences, and 
use environments face different requirements at state, federal, and international 
levels. A full accounting of these legal requirements, or of the policy questions 
involved, is far beyond the scope of this chapter. Additionally, the legal and 
regulatory framework for AI in health care continues to evolve, given the nascent 
stage of the industry.

In this chapter, we offer an overview of the landscape through early April 2019 
and undertake three tasks. First, we lay out a broad overview of laws applicable 
to different forms of health care AI, including federal statutes, federal regulations, 
and state tort law liability. Second, we address in considerable depth the regulatory 
requirements imposed on AI systems that help inform or make decisions about 
individual patients, such as diagnosis or treatment recommendations; these systems 
are referred to in this report as clinical AI. Clinical AI faces the closest scrutiny, 
especially by the U.S. Food and Drug Administration (FDA) and by other regulatory 
agencies internationally. These systems must demonstrate safety and efficacy. They 
may also generate liability under state tort law, which performs its own regulatory 
role and is intimately tied to the way FDA oversees clinical AI systems. Third, we 
note the legal and policy issues around privacy and patient data that affect clinical 
AI as well as other health care AI systems. Throughout the chapter, we highlight 
key challenges, opportunities, and gaps in the current framework. The chapter 
concludes with key considerations for addressing some of these issues.
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OVERVIEW OF HEALTH CARE AI LAWS AND 
REGULATIONS IN THE UNITED STATES

Developers and users of health care AI systems may encounter many different 
legal regimes, including federal statutes, federal regulations, and state tort law. 
Below are a few of the most significant among these laws and regulations:

• Federal Food, Drug, and Cosmetic Act (FDCA): FDA enforces the 
FDCA, which regulates the safety and effectiveness of drugs and medical 
devices, including certain forms of medical software (21 U.S.C. §§ 301 ff.). 
The bulk of this chapter describes the application of the FDCA to health care 
clinical AI systems.

• Health Insurance Portability and Accountability Act (HIPAA): In 
addition to the Privacy Rule (described in more detail below), HIPAA authorizes 
the U.S. Department of Health and Human Services to enforce the Security 
Rule (45 C.F.R. Parts 160 and 164). These rules create privacy and security 
requirements for certain health information. The HIPAA Breach Notification 
Rule also requires certain entities to provide notifications of health 
information breaches (45 C.F.R. §§ 164.400–164.414). To the extent that the 
development or use of health care AI systems involves health information 
covered by HIPAA, those requirements may apply to developers or users of 
such systems.

• Common Rule: The Common Rule sets requirements for research on 
human subjects that either is federally funded or, in many instances, takes 
place at institutions that receive any federal research funding (45 C.F.R. 
Part 46). Among other things, most human subjects research must be reviewed 
by an institutional review board (45 C.F.R. § 46.109). These requirements 
can apply to AI used for research or the research used to create health care 
AI. The Common Rule is enforced by the Office for Human Research 
Protections.

• Federal Trade Commission Act (FTCA): The FTCA prohibits deceptive 
and unfair trade practices affecting interstate commerce (15 U.S.C. §§ 41–58). 
These could include acts relating to false and misleading health claims, 
representations regarding a piece of software’s performance, or claims affecting 
consumer privacy and data security. Health care AI products may raise any 
of these types of claims. The Federal Trade Commission (FTC) enforces the 
requirements of the FTCA.

• FTC Health Breach Notification Rule: This FTC rule, separate from 
HIPAA’s Breach Notification Rule, requires certain businesses to provide 
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notifications to consumers after a breach of personal health record information, 
including information that may be collected to train, validate, or use health 
care AI systems (16 C.F.R. Part 318). The FTC enforces this rule.

• State tort law: When one individual or entity injures another, tort law may 
allow the injured individual to recover damages. Injury could result from the 
use of health care AI systems, including when the behavior of developers, 
providers, hospitals, or other health care actors falls below the standard of care. 
State law determines the applicable standard of care and when tort liability 
will exist.

We summarize each of these categories of regulatory and legal oversight by 
application in Table 7-1, referencing the applicable laws and regulations for 
different types of AI systems. Liability refers to the legal imposition of responsibility 
for injury through the state tort law system.

TABLE 7-1 | Typical Applicability of Various Laws and Regulations to U.S. Health Care 
Artificial Intelligence Systems
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SAFET Y AND EFFICACY OF CLINICAL SYSTEMS

A key set of laws work to ensure the safety and efficacy of medical technology, 
including clinical AI systems. The principal requirements are determined by the 
FDCA and enforced by FDA. State tort law also plays a role in ensuring quality 
by managing liability for injuries, including those that may arise from insufficient 
care in developing or using clinical AI.

The raison d’être of clinical AI systems is to be coupled with and to inform 
human decision making that bears upon the content and conduct of clinical 
care, including preventive care, to promote favorable, equitable, and inclusive 
clinical outcomes and/or mitigate risks or interdict adverse events or nonoptimal 
outcomes. Regulatory authorities in various countries, including FDA, expect 
the pharmaceutical, medical device, and biotechnology industries to conduct 
their development of all diagnostics and therapeutics (including companion 
and complementary diagnostics and therapeutics) toward the goal of safer, more 
efficacious, and personalized medicine. This development should result in care that 
is, at a minimum, not inferior to conventional (non-AI-based) standard-of-care 
outcomes and safety endpoints. Health services are expected to fund such 
AI-coupled diagnostics and therapeutics, and prescribers and patients are, over 
time, likely to adopt and accept them. Increased development of “coupled” 
products (including clinical AI systems) could result in “safer and improved 
clinical and cost-effective use of medicines, more efficient patient selection for 
clinical trials, more cost-effective treatment pathways for health services,” and a 
less risky, more profitable development process for therapeutics and diagnostics 
developers (Singer and Watkins, 2012).

The right level of regulation requires striking a delicate balance. While the 
over-regulation or over-legislation of AI-based personalized medical apps may 
delay the translation of machine learning findings to meaningful, widespread 
deployment, appropriate regulatory oversight is necessary to ensure adoption, trust, 
quality, safety, equitable inclusivity, and effectiveness. Regulatory oversight is also 
needed to minimize false-negative and false-positive errors and misinterpretation 
of clinical AI algorithms’ outputs, actions, and recommendations to clinicians. 
Recent examination of the ethics of genome-wide association studies for 
multifactorial diseases found three criteria necessary for identification of genes 
to be useful: (1) the data in the studies and work products derived from them 
must be reproducible and applicable to the target population; (2) the data and the 
derived work products should have significant usefulness and potential beneficial 
impact to the patients to whom they are applied; and (3) the resulting knowledge 
should lead to measurable utility for the patient and outweigh associated risks or 
potential harms (Jordan and Tsai, 2010). Thus, regulatory standards for clinical 
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AI tools should at least extend to accuracy and relevancy of data inputs and model 
outputs, marketing of AI systems for specific clinical indications, and transparency 
or auditability of clinical AI performance.

Medical Device Regulation

Some AI systems, particularly those algorithms that will perform or assist with 
clinical tasks related to diagnosis, interpretation, or treatment, may be classified 
as medical devices and fall under applicable FDA regulations. Other AI systems 
may instead be classified as “services” or as “products,” but not medical devices 
(see Box 7-1). FDA’s traditional regulatory processes for medical devices include 
establishment registration and listing plus premarket submissions for review and 
approval or clearance by FDA’s Center for Devices and Radiological Health Office 
of Device Evaluation or Office of In Vitro Diagnostics and Radiological Health. 
In the United States, the Medical Device Amendments of 1976 (P.L. 94-295) 
to the FDCA (21 U.S.C. § 360c) established a risk-based framework for the 
regulation of medical devices. The law established a three-tiered risk classification 
system based on the risk posed to patients should the device fail to perform 
as intended. The FDCA (21 U.S.C. § 360j) definition of a medical device is 
summarized in Box 7-1.

BOX 7-1

Federal Food, Drug, and Cosmetic Act (21 U.S.C. § 360j)  

Medical Device Definition

[A]n instrument, apparatus, implement, machine, contrivance, implant, in vitro reagent, 

or other similar or related article, including a component part, or accessory which is:

[One from the following]

Recognized in the official National Formulary, or the United States Pharmacopoeia, 

or any supplement to them OR intended for use in the diagnosis of disease or other 

conditions, or in the cure, mitigation, treatment, or prevention of disease, in man or 

other animals OR intended to affect the structure or any function of the body of man 

or other animals, and which does not achieve its primary intended purposes through 

chemical action within or on the body of man or other animals AND which does not 

achieve its primary intended purposes through chemical action within or on the body 

of man or other animals and which is not dependent upon being metabolized for the 

achievement of its primary intended purposes.
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The 21st Century Cures Act (Cures Act, P.L. 114-255) was signed into law on 
December 13, 2016. The significant portion with regard to clinical AI systems is 
Section 3060 (“Regulation of Medical and Certain Decisions Support Software”), 
which amends Section 520 of the FDCA so as to provide five important 
exclusions from the definition of a regulatable medical device. Under Section 
3060 of the Act, clinical decision support (CDS) software is nominally exempted 
from regulation by FDA—that is, it is defined as not a medical device—if it is 
intended for the purpose of:

(i)  displaying, analyzing, or printing medical information about a patient or 
other medical information (such as peer-reviewed clinical studies and 
clinical practice guidelines);

(ii)  supporting or providing recommendations to a health care professional 
about prevention, diagnosis, or treatment of a disease or condition; and

(iii)  enabling such health care professional to independently review the basis 
for such recommendations that such software presents so that it is not 
the intent that such health care professional rely primarily on any of 
such recommendations to make a clinical diagnosis or treatment decision 
regarding an individual patient.

This exemption does not apply to software that is “intended to acquire, process, 
or analyze a medical image or a signal from an in vitro diagnostic device or a 
pattern or signal from a signal acquisition system” (21st Century Cures Act § 3060). 
FDA has stated that it would use enforcement discretion to not enforce compliance 
with medical device regulatory controls for medical device data systems, medical 
image storage devices, and medical image communications devices (FDA, 2017a). 
The 21st Century Cures Act codifies some of FDA’s prior posture of restraint 
from enforcement.

Under this system, devices that pose greater risks to patients are subject to more 
regulatory controls and requirements. Specifically, general controls are sufficient 
to provide reasonable assurance of a Class I device’s safety and effectiveness, while 
special controls are utilized for Class II devices for which general controls alone 
are insufficient to provide reasonable assurance of device safety and effectiveness 
(21 C.F.R. § 860.3). FDA classifies Class III devices as ones intended to be used in 
supporting or sustaining human life or for a use that is of substantial importance 
in preventing the impairment of human health, or that may present a potential 
unreasonable risk of illness or injury, and for which insufficient information exists 
to determine whether general controls or special controls are sufficient to provide 
reasonable assurance of the safety and effectiveness of a device (21 C.F.R. § 860.3). 
This highest risk class of devices is subject to premarket approval to demonstrate a 
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reasonable assurance of safety and effectiveness. Even for this highest risk class of 
devices, the evidence FDA requires for premarket approval has long been flexible, 
varying according to the characteristics of the device, its conditions of use, the 
existence and adequacy of warnings and other restrictions, and other factors. 
There is generally more flexibility in the amount of clinical evidence needed for 
medical devices than for drugs and biological products, because they are subject 
to different statutory criteria and the mechanism of action and modes of failure 
are generally more predictable and better characterized for devices than for drugs 
and biological products.

Additionally, the design process for a medical device is more often an iterative 
process based largely on rational design and non-clinical testing rather than clinical 
studies. However, this last aspect is not, in general, true for clinical AI systems. The 
machine learning process is itself a kind of observational research study. In some 
cases—particularly for medium- and high-risk clinical AIs—the design process 
may depend on lessons learned as such tools are deployed or on intermediate 
results that inform ways to improve efficacy (FDA, 2019b). The Clinical Decision 
Support Coalition and other organizations have recently opined that many types 
of clinical AI tools should not be regulated or that the industry should instead 
self-regulate in all application areas that FDA chooses not to enforce on the basis 
of their review of risks to the public health. Notably, the principles and risk-
based classification processes have recently been updated to address requirements 
for software as a medical device (SaMD) products (see FDA, 2017c § 6.0, p. 11; 
IMDRF, N12 § 5.1).

It is worth noting the distinction between CDS software tools, including clinical 
AIs, that replace the health professional’s role in making a determination for 
the patient (i.e., automation) and those that simply provide information to the 
professional, who can then take it into account and independently evaluate it (i.e., 
assistance). The former may be deemed by FDA to be a medical device and subject 
to medical device regulations. Under the 21st Century Cures Act, if a CDS product 
has multiple functions, where one is excluded from the definition of a medical 
device and another is not, FDA can assess the safety and effectiveness to determine 
whether the product should be considered a medical device (21st Century Cures 
Act § 3060). Also, FDA can still regulate the product as a medical device if it 
finds that the software “would be reasonably likely to have serious adverse health 
consequences” or meets the criteria for a Class III medical device. Clinical AI 
systems that are deemed to be medical devices will generally require either De 
Novo or premarket approval submissions (FDA, 2018a). In some instances, where a 
valid pre-1976 predicate exists, a traditional 510(k) submission may be appropriate.

Note, too, that the 21st Century Cures Act’s statutory language, while already 
in force, is subject to implementing regulations to be developed by FDA over 
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time and leaves considerable ambiguity that subjects developers of clinical AI 
systems to FDA enforcement discretion. For example, uncertainty remains when 
software is being used in “supporting or providing recommendations,” or when 
it “enables a health care professional to independently review the basis for [its] 
recommendations.” FDA has issued some draft guidance (FDA, 2017b), and more 
guidance will undoubtedly be forthcoming. But ambiguity will likely be present 
nonetheless, as will the possibility of enforcement discretion.

Oversight of safety and effectiveness does not just come from regulators, 
whether domestic or international. In particular, diagnostic testing that is provided 
by laboratories and other enterprises as services is subject to oversight provided 
by the Clinical Laboratory Improvements Act of 1988 (CLIA, P.L. 100-578) and 
the Patient Safety and Quality Improvement Act of 2005 (P.L. 109-41). Certain 
clinical AI tools that are services rather than products may be appropriate to 
regulate under CLIA. It is possible that some clinical AIs—especially ones that 
have aspects similar to diagnostics classified as laboratory-developed tests (LDTs), 
developed and performed in university-based health facilities or other provider 
organizations—may be deployed strictly as services for patients in the care of 
those institutions and not marketed commercially.

FDA’s Digital Health Initiative

FDA has expressed interest in actively promoting innovation in the digital 
health space. FDA’s proposed Digital Health Software Precertification (Pre-Cert) 
Program aims to (1) substantially reduce regulatory burdens for most suppliers 
and operators of clinical AI systems and (2) improve the health system’s rates of 
responsiveness to emerging unmet health needs, including personalized medicine 
(FDA, 2018c).

The 21st Century Cures Act and FDA documents reflect an increasing realization 
that data from real-world operations are necessary for oversight. Health care 
information technology (IT) systems are so complex and the conditions under 
which clinical AI systems will operate so diverse that development, validation, 
and postmarket surveillance must depend on utilizing real-world data and not 
just clinical trials data or static, curated repositories of historical data. “Real-
world data (RWD) are data relating to patient health status and/or the delivery 
of health care routinely collected from a variety of sources,” including electronic 
health record (EHR) systems (FDA, 2019c). “Real-world evidence (RWE) is the 
clinical evidence regarding the usage, and potential benefits or risks, of a medical 
product derived from analysis of RWD” (FDA, 2019c). All of these are subject 
to applicable HIPAA and other privacy protections such that RWD and RWE 
must be rigorously de-identified (El Emam, 2013) prior to use for the secondary 
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purposes of clinical AI development and productization. RWE and RWD are 
discussed in greater detail below.

The goal of FDA’s Pre-Cert Program (FDA, 2019a) is to establish voluntary, 
tailored, pragmatic, and least-burdensome regulatory oversight to assess software 
developer organizations of all sizes. The Pre-Cert Program simultaneously aims to 
establish trust that developers have adequate quality management system (QMS) 
processes in place and a culture of quality and organizational excellence such that 
those developers can develop and maintain safe, effective, high-quality SaMD 
products. The Pre-Cert Program leverages the transparency of organizational 
QMS compliance and product safety as well as quality metrics across the entire 
life cycle of SaMD. It uses a streamlined premarket review process and leverages 
postmarket monitoring to verify the continued safety, effectiveness, and quality 
performance of SaMD in the real world. The premarket review for a precertified 
organization’s SaMD product is informed by the organization’s precertification 
status, precertification level, and the SaMD’s risk category. With this program, 
FDA envisions leveraging the risk-category framework for SaMD developed 
by the International Medical Device Regulators Forum (IMDRF) to inform 
the risk category (FDA, 2017c, 2019b). The IMDRF framework describes the 
spectrum of software functions, some of which may not meet the definition of a 
device in Section 201(h) of the FDCA and others that may meet the definition 
of a device, but for which FDA has expressed that it does not intend to enforce 
compliance. For the purposes of the Pre-Cert Program, the application of 
FDA’s long-established risk category framework would remain consistent with 
the current definition of device under Section 201(h) of the FDCA and FDA’s 
current enforcement policies. The IMDRF framework establishes types and 
subtypes of SaMD products based on the state of the health care condition and 
the significance of the information provided by the products (IMDRF, 2014).

Most clinical AI systems are multielement “ensembles” of a plurality of 
predictive models with an evidence-combining “supervisor” module that 
establishes a collective answer or output from the ensemble-member models’ 
execution. Clinical AI involves prediction, classification, or other intelligence-
related outputs. These are generated from data supplied as inputs to the model, 
from fewer than 10 to many hundreds of phenotypic input variables or—in the 
case of time-series or spectrum-analytic AI systems, image-processing AI systems, 
or AI systems that include genomics biomarkers—a large number of engineered 
features that are derived from very high-dimensional raw data inputs. Likewise, 
present-day genomics-based diagnostics typically involve dozens of input 
variables, for which there are regulatory policies and procedures that have been 
established for more than 10 years. These govern existing regulated diagnostics, 
such as in vitro diagnostic multivariate index assays (IVDMIAs) (FDA, 2007a). 
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Not all clinical AI systems will manifest hazards or have risk levels comparable 
to those associated with existing IVDMIA products. However, the methodology, 
review, and clearance criteria that have been found effective for the regulation of 
IVDMIAs may form a useful point of reference for the regulatory practice for 
clinical AI systems.

Clinical AI Systems That May Merit Different 
Regulator y Approaches

FDA has indicated that it will apply a risk-based assessment framework, where 
the risk level of different clinical AI systems will be influenced by the different 
types of on-label clinical indications and contexts in which they are intended to 
be used, plus the different situations in which their off-label usage might plausibly 
be anticipated, adopting the IMDRF framework (FDA, 2019b; IMDRF, 2014).

For example, a clinical AI system’s intended use might be as a screening test to 
determine the person’s susceptibility to, or propensity in the future to, develop 
a clinical condition or disease that has not yet materialized; this affords time for 
longitudinal observation, repeat testing, and vigilance to monitor signs and 
symptoms of the emergence of the disease and is accordingly lower risk. Similarly, 
an AI system designed to classify a condition’s stage or current severity, or to establish 
the prognosis or probable clinical course and rate of progression of a condition, 
functions essentially like a biomarker that characterizes risk and does so in a manner 
that is amenable to multiple repeat tests and observations over a period of time.

Such situations have low time sensitivity and a plurality of opportunities 
for the experienced clinicians to review, second-guess, and corroborate the 
recommendations of the screening clinical AI system. In IMDRF parlance, these 
are clinical AI systems that “inform” clinical management but do not “drive” 
clinical management. Indeed, the “informing care” function of some present-day 
clinical AI tools of this type is to automatically/reflexively order the appropriate 
standard-of-care confirmatory diagnostic testing and monitoring. These clinical 
AI systems provide additional evidence or advice (e.g., regarding the likelihood of 
the condition screened for and/or the cost-effectiveness of pursuing a diagnostic 
workup for the condition) and promote consistency, relevancy, and quality in 
diagnostic workups. In general, such screening or informational clinical AI systems 
will be classified as having low risk. As such, many clinical AI systems are outside 
the formal scope of medical device regulation and do not require establishment 
registration and listing or other regulatory filings (21st Century Cures Act § 3060).

By contrast, some classification, forecasting, and prognostic biomarker clinical 
AI algorithms that instead drive clinical management and/or involve clinical 
indications may be associated with a medium or high risk; the AI systems could 



Health Care Artificial Intelligence: Law, Regulation, and Policy  |  207

contain faults that cause harm via commissive or omissive errors, either directly 
or through clinicians’ actions or inaction. Perioperative, anesthesiology, critical 
care, obstetrics, neonatology, and oncology use-cases are examples of medium- or 
high-risk settings (Therapeutic Monitoring Systems, Inc., 2013). In such situations, 
there is great time sensitivity and there may be little or no time or opportunity to 
seek additional testing or perform more observations to assess the accuracy of the 
AI’s recommendation or action. In some instances, such as oncology and surgery, 
the decision making informed by the AI tool may lead to therapeutic actions that 
are not reversible and either close other therapeutic avenues or alter the clinical 
course of the illness and perhaps its responsiveness to subsequent therapy. Such 
AI tools would, by Section 3060 of the 21st Century Cures Act, be formally 
within the scope of medical device regulation and would require establishment 
registration, listing, and other regulatory filings—De Novo, 510(k), premarket 
approval, or precertification—and associated postmarket surveillance, reporting, 
and compliance procedures.

Explainability and Transparency from a Regulator y Perspective

AI systems are often criticized for being black boxes (Pasquale, 2016) that are 
very complex and difficult to explain (Burrell, 2016). Nevertheless, such systems 
can fundamentally be validated and understood in terms of development and 
performance (Kroll, 2018; Therapeutic Monitoring Systems, Inc., 2013), even if 
not in terms of mechanism—and even if they do not conform to preexisting 
clinician intuitions or conventional wisdom (Selbst and Barocas, 2018). Notably, 
the degree of “black box” lack of explainability that may be acceptable to 
regulators validating performance might differ from the amount of explainability 
clinicians demand, although the latter is an open empirical question. This chapter 
addresses explainability to clinicians and other nonregulators only to the extent 
that it interacts with regulatory requirements. Instead, the focus is largely on 
validation by regulators, which may be satisfied by some current development 
processes.

While the rest of this section focuses on how explainability and transparency 
may or may not be required for regulators to oversee safety and efficacy, 
regulators may also require explainability for independent reasons. For instance, 
regulators may require clinical AI tools to be explainable to clinicians to whose 
decision making they are coupled; to quality assurance officers and IT staff 
in a health provider organization who acquire the clinical AI and have risk-
management/legal responsibility for their operation; to developers; to regulators; 
or to other humans. The European Union’s General Data Protection Regulation 
(GDPR) right to explanation rules, for instance, enacted in 2016 and effective 
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May 2018, applies to AI systems as well as humans and web services (Kaminski, 
2019) and governs European Union citizens worldwide. Similar standards may 
be implemented in the United States and other jurisdictions. Such standards and 
regulations are important for public safety and for the benefits of clinical AI systems 
to be realized through appropriate acceptance and widespread use. However, the 
notion of explainability is not well defined. There is a lack of agreement about 
both what constitutes an adequate explanation of clinical AI tools, and to whom 
the explanation must be provided to conform to applicable right to explanation 
rules and thus be suitable for regulatory approval.

Current right to explanation regulations and standards fails to acknowledge that 
human data scientists, clinicians, regulators, courts, and the broader public have 
limitations in recognizing and interpreting subtle patterns in high-dimensional 
data. Certain types of AI systems are capable of learning—and certain AI models 
are capable of intelligently and reliably acting upon—patterns that humans are 
entirely and forever incapable of noticing or correctly interpreting (Seblst and 
Barocas, 2019). Correspondingly, humans, unable to grasp the patterns that AI 
recognizes, may be in a poor position to comprehend the explanations of AI 
recommendations or actions. As noted, the term “black box” is sometimes pejorative 
toward AI, especially neural networks, deep learning, and other fundamentally 
opaque models. They are contrasted to logistic regression; decision-tree; and 
other older-technology, static, deterministic models—all with low dimensionality 
but are able to show the inputs that led to the recommendation or action, with 
variables that are generally well known to the clinician and causally related.

If society, lawmakers, and regulatory agencies were to expect every clinical 
AI system to provide an explanation of its actions, it could greatly limit the 
capacity of clinical AI developers’ use of the best contemporary AI technologies, 
which markedly outperform older AI technology but are not able to provide 
explanations understandable to humans. Regulators do not currently require 
human-comprehensible explanations for AI in other industries that have 
potential risks of serious injury or death. For example, autonomous vehicles are 
not required to provide a running explanation or commentary on their roadway 
actions.

While requiring explainability may not always be compatible with maximizing 
capacity and performance, different forms of transparency are available that 
might enable oversight (see Figure 7-1). For instance, transparency of the 
initial dataset—including provenance and data-processing procedures—helps 
to demonstrate replicability. Transparency of algorithm or system architecture is 
similarly important for regulatory oversight. When AI systems are transparent not 
just to the regulator but more broadly, such transparency can enable independent 
validation and oversight by third parties and build trust with users.
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AI Logging and Auditing

Today, developers creating clinical AI systems with their enterprises’ risk-
management and product liability exposures in mind are engineering and testing 
their clinical AI deliverables with Agile (Jurney, 2017) or other controlled software 
development life cycle (SDLC) methods. Defined, well-managed, and controlled 
SDLC processes produce identifiable and auditable systems and maintain controlled 
documents of the systems’ development processes under the developers’ written, 
reviewed, and approved standard operating procedures. They conform to QMS 
principles (see ISO-9001, ISO-13485, and 21 C.F.R. Part 820), FDA device master 
record type, Current Good Manufacturing Practices (CGMPs), and applicable laws 
and regulations. These include design assurance, design control, hazard analysis, 
and postmarket surveillance (21 C.F.R. Part 822) provisions. Such industrial-
strength developers of clinical AI systems also engineer their systems such that 
the systems’ operation creates (1) a persistent, archived log of each transaction or 

FIGURE 7-1 | Different forms of transparency.
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advisory output that each clinical AI system performs; (2) the versioning of the 
AI system’s elements that performed the transaction, traceable to the data sources; 
and (3) the validation and software quality-assurance testing that led to the AI 
systems being authorized for production and subsequent use. These logs enable 
the examination of the inputs, outputs, and other details in case of anomalies or 
harms. The logs are open to the clinician-users, employers, organizations who 
acquire/authorize the AI system’s deployment (e.g., health provider organizations, 
health plans, or public health agencies), regulators, developers, and the courts. The 
individual release-engineered and version-controlled instances of present-day 
industrial-strength clinical AI systems are identifiable and rigorously auditable, 
based on these SDLC controlled-document artifacts, which are maintained by 
the developer organization that owns the intellectual property.

For this type of clinical AI system, the regulatory agencies’ traditional submissions 
and compliance processes for SaMD are feasible and may not need substantial 
alteration (e.g., FDA, 2018b). The types of evidence required by plaintiffs, 
defendants, counsel, and the courts may not need substantial alteration, although 
the manner of distributed storage, retrieval, and other aspects of provisioning 
such evidence will change. Moreover, the availability of such evidence will not be 
significantly altered by the nature of clinical AI systems, provided that developers 
follow QMS and CGMPs and maintain conformity, including controlled-
document artifacts retention.

Some clinical AI tools will be developed using RWD. Because RWD are 
messy in ways that affect the quality and accuracy of the resulting inferences, 
as described in Chapter 6, more rigorous requirements for auditing clinical AI 
systems developed and validated using RWD will need to be established.

AI Performance Surveillance and Maintenance

Several architectural and procedural aspects of machine learning–based clinical AI 
systems will require significant changes in regulatory compliance and submissions, 
in terms of scale and scope. In modern AI applications using dynamic data sources—
such as clinical data streams stored in EHRs, data collected via sensor-enabled 
wearable devices and combined with other forms of data, and other RWD—the AI 
models and algorithms are likely to experience drift over time or as the algorithms 
are deployed across institutions whose catchment areas and epidemiology differ 
(dataset shift, see Quiñonero-Candela et al., 2009; Subbaswamy et al., 2019). These 
longitudinal drifts and shifts entail expanded design control, design assurance, and 
evidentiary requirements, as discussed in Chapter 6 and below. Therefore, the 
traditional approach of assessing performance using a static, limited dataset to make 
assessments about the ongoing safety of a system is inadequate with regard to 
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clinical AI. Continuous machine learning offers one solution for dataset shift and 
drift by updating with new population-specific data (FDA, 2019b). Not all clinical 
AI systems aim to do this, and very few clinical AI systems implement continuous 
learning today. The goals of learning health systems and personalized medicine 
do create an impetus for more continuous machine learning–based AI systems, 
as discussed in Chapters 3 and 6 in more detail. However, current regulatory and 
jurisprudential methods and infrastructure are not prepared for this.

Natural Language Processing and Text Mining AI

Unstructured notes constitute another important source of RWD, and 
appropriate standards for the extraction, parsing, and curation of unstructured 
information for clinical AI systems is therefore another open area requiring 
regulatory oversight. Natural language processing (NLP) algorithms and text 
mining are important for certain kinds of clinical AI that use unstructured data 
such as clinical impressions and other remarks, as discussed in Chapter 5.

There will be a need for retention and curation of the unstructured source-text 
documents as well as the discrete labels or concept codes and values derived 
by NLP from those documents. Retention of all of these is necessary because 
NLP algorithms may change over time. The underlying lexical reference data 
and parameters that govern the parser’s operation may likewise change from one 
release to the next. Thus, release engineering regression testing and validation of 
successive releases of a clinical AI model that depends on unstructured text must 
be able to demonstrate that the NLP subsystem continues to meet its specifications 
and delivers to the clinical AI model inputs that are substantially equivalent to 
the results it delivered for the same test cases and document content in previous 
releases. Furthermore, there is natural variability in how different individuals speak. 
Unlike physiology, factors such as culture and training affect how individuals 
describe a phenomenon. Clinical AI systems must be robust to these variations.

Clinical Decision Support Systems

Another architectural factor to consider when regulating clinical AI systems is that 
traditional CDS systems have tended to be embedded in tangible medical devices 
or in single-site on-premises EHR systems (Evans and Whicher, 2018). The system 
configurations and dated-signed records of changes in such architectures are readily 
auditable by users, regulators, and courts. By contrast, many contemporary AI systems 
are deployed on cloud-based, geographically distributed, nondeterministically 
parallelized, spatially arbitrary computing architectures that, at any moment, are 
physically unidentifiable. To create and maintain a full log of each processor that 
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contributed in some part to the execution of a multielement ensemble model AI is 
possible in principle but would likely be cost-prohibitive and too cumbersome to 
be practical. Therefore, the limited traceability and fundamental non-recreatability 
and non-retestability of a patient’s or clinician’s specific execution of an AI system 
that may have contained a fault or that produced errors or failures—untoward, 
unexpected deviations from its specifications, validation testing, and hazard 
analysis—may pose particular problems for regulators, courts, developers, and the 
public. These nondeterministic, noncollocation aspects of contemporary cloud-
based AI implementations contrast with traditional criteria for tracking product 
changes (e.g., 510(k) supplements or adverse event reporting systems).

Hazard Identif ication, Risk Analysis,  and Reporting 
Recommendations for Safe Clinical AI Systems

Identifying hazards is a necessary step to support safe system design and 
operations. Identifying hazardous situations requires experts to carefully and 
thoroughly evaluate the system via one of several methods. Successful assurance 
of public safety rests on (1) identifying and analyzing all significant possible 
scenarios that could result in accidents of differing severity, and (2) devising and 
documenting effective means of mitigating the scenarios’ likelihood, frequency, 
and severity. Although hazard identification and quantitative risk assessment are 
important, risk management also depends on qualitative or subjective judgments 
(e.g., human observation, intuition, insight regarding processes and mechanisms 
of causation, creativity in anticipating human actions and psychology, and domain 
expertise). Each of these judgments introduces biases and chances of omissions. 
Thus, hazard identification should be a structured process.

Traditional modes of risk assessment and hazard analysis (e.g., hazard and 
operability study [HAZOP] or process hazard analysis [PHA]) that have been used 
in regulation of medical devices for decades can also be used for clinical AI systems 
(ISO, 2009, 2016). However, new hazard types related to geographic dispersity and 
the dynamic, nondeterministic execution of cloud-based clinical AI systems and 
machine learning mean that new risks must be evaluated and new mitigations 
must be devised, tested, and documented. Clinical AI systems may exhibit emergent 
properties that depend on the whole system as it evolves in time and are not specified 
or statically defined by the system’s parts or subsystems (Johnson, 2002; Louis and 
Nardi, 2018). This means that the safety of a clinical AI system, like an autonomous 
vehicle, cannot “solely be analyzed or verified by looking at, for example, a hardware 
architecture” or only one physical system instantiation (Bagschik et al., 2018). As a 
result, requirements “must be derived in a top-down development process which 
incorporates different views on a system at all levels” (Bagschik et al., 2018).
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Regulatory agencies should require clinical AI developers to conduct iterative 
system testing on multiple physical instances of the system and with enough 
iterations to provide reasonable assurance of detecting faults and hazards from many 
sources. These could include (1) logic races; (2) nonbinding and nonexecution of 
worker agents on cloud-based servers; (3) variable or prolonged latencies of data 
ingestion of accruing clinical information on which an AI depends into noSQL 
repositories; (4) nonexistent or erroneous mappings of input and output variables 
utilized by the AI algorithms to do their work; (5) nonreceipt or system-mediated 
rejection or nonstorage or nondisplay of the AI’s output to the relevant user(s); 
and even (6) potentially automatic software updates (i.e., unsupervised updates of 
clinical AI systems into “live” production environments, where they immediately 
begin to affect decisions and might not undergo local review and approval first 
by the user-clinicians’ IT or quality assurance staff). Such an iterative testing 
requirement is consistent with FDA’s recently issued guidance on addressing 
uncertainty in premarket approval decision making (FDA, 2018a).

For continuous learning and other dynamic, adaptive, and nondeterministic 
aspects of clinical AI systems and the computing architectures on which they are 
implemented, developers and regulators could usefully look to risk-assessment 
and -management methods that have been successfully used for two decades 
in the chemical process industry and other continuous-process operations such 
as public utilities (Alley et al., 1998; Allocco, 2010; Baybutt, 2003; Bragatto 
et al., 2007; Chung and Edwards, 1999; Frank and Whittle, 2001; Hyatt, 2003; 
Nolan, 2011; Palmer, 2004; Paltrinieri and Khan, 2016; Reniers and Cozzani, 
2013; Venkatasubramanian et al., 2000; Villa et al., 2016). Chemical plants, for 
instance, depend on the availability of public utilities such as water, and chemical 
plant failure analyses note that dependence. A clinical AI system’s developer 
could similarly list the complete set of utilities (e.g., ongoing access to users’ 
de-identified datasets, on which the AI system’s development and validation are 
based, plus the user’s production system and its data on which the AI’s runtime 
operation depends) that might affect a specific node’s operation, and assess and 
manage each of them.

Clinical AI Systems’ Prediction/Classif ication 
Effectiveness- and Utility-Related Performance

The accuracy, sensitivity, and specificity of clinicians’ judgment and of 
traditional diagnostics are measures against which clinical AI systems’ statistical 
performance must compare favorably. FDA has, for many years, set forth guidance 
on procedures for assessing noninferiority and superiority of new medical 
products (FDA, 2016a; Newcombe, 1998a,b). For many applications, the so-called 
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Number Needed to Treat (NNT) and Number Needed to Harm (NNH) are 
useful measures of population-level clinical utility of a therapeutic or a diagnostic 
(Cook and Sackett, 1995; Laupacis et al., 1988). A product (i.e., medication or 
medical device) or a health service (i.e., clinical intervention, procedure, or care 
process) that has a very high NNT value (>100) or that has a very low NNH 
value (<10) is unlikely to meet clinicians’ or consumers’ expectations of probable 
clinical benefit and improbable clinical harm.

The international CONsolidated Standards of Reporting Trials (CONSORT, 
2010) and STARD (Standards for Reporting of Diagnostic Accuracy Studies; 
Bossuyt et al., 2003) initiatives pertain to the verification of diagnostic accuracy 
conforming to existing good clinical practice rules and guidelines (Steyerberg, 
2010). While these initiatives are not focused on studies that aim to demonstrate 
diagnostic device equivalence, many of the reporting concepts involved are 
nonetheless relevant and applicable to clinical AI. The CONSORT guidelines 
aim to improve the reporting of randomized controlled trials, enabling reviewers 
to understand their design, conduct, analysis, and interpretation, and to assess the 
validity of their results (CONSORT, 2010). However, CONSORT is also applicable 
to observational, nonrandomized studies and AI derived from machine learning.

According to a 2007 FDA guidance document,

FDA recognizes two major categories of benchmarks for assessing diagnostic 
performance of new qualitative [classificatory or binomial/multinomial predictive] 
diagnostic tests. These categories are (1) comparison to a reference standard (defined 
below), or (2) comparison to a method or predicate other than a reference standard 
(non-reference standard).

. . . The diagnostic accuracy of a new test refers to the extent of agreement 
between the outcome of the new test and the reference standard. We use the 
term reference standard as defined in STARD. That is, a reference standard is 
“considered to be the best available method for establishing the presence or 
absence of the target condition.” It divides the intended use population into only 
two groups (condition present or absent) and does not consider the outcome of 
the new test under evaluation.

The reference standard can be a single test or method, or a combination of 
methods and techniques, including clinical follow-up [by appropriately 
credentialed clinician experts]. If a reference standard is a combination of 
methods, the algorithm specifying how the different results are combined to 
make a final positive/negative classification (which may include the choice and 
ordering of these methods) is part of the standard. (FDA, 2007b)
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In addition to the area under the receiver operating characteristic (AUROC) 
curve, it is also important to evaluate the sensitivity, specificity, positive predictive 
value (PPV), and negative predictive value (NPV) as part of regulatory assessment 
of clinical machine learning predictive models and AI. These additional 
statistical performance metrics take the prevalence of the predicted outcome 
into account (unlike the AUROC curve, which is independent of prevalence 
[Cook, 2008]), and therefore have greater clinical relevance. Past studies have 
shown that PPV and the AUROC curve have minimal correlation for risk 
prediction models (Goldstein et al., 2017). Conventional statistical measures of 
accuracy, sensitivity, specificity, PPV, NPV, AUROC and partial AUROC, and 
so forth are, and will remain, the principal guides for regulatory clearance and 
enforcement.

Analytical validation involves “establishing that the performance characteristics 
of a test, tool, or instrument are acceptable” (Scheerens et al., 2017); the relevant 
performance characteristics are described in Chapter 5 and are important for 
regulatory oversight as well as internal analytical validation. These characteristics 
validate the AI’s technical performance, but not its usefulness or clinical value. 
Beyond conventional statistical metrics for diagnostic medical devices and 
regulatory agencies’ de facto norms for these, the objectives of clinical validation 
testing of an AI tool are to quantitatively evaluate a variety of practical questions:

• How did the AI algorithm outputs inform or obfuscate clinical decision 
support recommendations?

•  How often were AI system recommendations reasonable compared to local 
licensed peer clinicians addressing similar situations, according to expert 
clinicians?

•  How often did attending clinicians or other staff accept the AI tool’s 
recommendations, and how often did they override or interdict the action or 
recommendation of the AI tool?

•  How often were the AI tool’s recommendations or actions unsafe or 
inefficacious, how often did they lead to errors or harm, and are the AI-
associated rates of harm or nonbenefit unacceptably worse (i.e., statistically 
and clinically inferior) to what competent humans’ results are?

Furthermore, clinical utility is an inherent consideration for clinical AIs, as 
described in Chapter 6. “The conclusion [is] that a given use of a medical product 
will lead to a net improvement in health outcome or provide useful information 
about diagnosis, treatment, management, or prevention of a disease. Clinical utility 
includes the range of possible benefits or risks to individuals and populations” 
(FDA-NIH Biomarker Working Group, 2016).
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Chapter 5 describes bias in sensitivity and specificity estimates in some detail. 
According to FDA,

sensitivity and specificity estimates (and other estimates of diagnostic 
performance) can be subject to bias. Biased estimates are systematically too high 
or too low. Biased sensitivity and specificity estimates will not equal the true 
sensitivity and specificity, on average. Often the existence, size (magnitude), and 
direction of the bias cannot be determined. Bias creates inaccurate estimates.

[Regulatory agencies hold that] it is important to understand the potential 
sources of bias to avoid or minimize them [Pepe, 2003]. Simply increasing 
the overall number of subjects in the study will do nothing to reduce bias. 
Alternatively, selecting the “right” subjects, changing study conduct, or data 
analysis procedures may remove or reduce bias. (FDA, 2007b)

These steps are essential to eliminate validation leakage and help to estimate 
the stability of the model over time.

Two main biases are important to consider: representational bias and information 
bias (Althubaiti, 2016). Representational bias refers to which individuals or data 
sources are represented in the data and which are not. Information bias is meant 
to represent collectively “all the human biases that distort the data on which a 
decision maker [relies] and that account for the validity of data [that is, the extent 
these represent what they are supposed to represent accurately]” (Cabitza et al., 
2018). These two biases and the related phenomenon of information variability 
together can degrade the accuracy of the data and, consequently, the accuracy of 
the clinical AI model derived from them.

Real-World Evidence, Postmarket Sur veil lance, and 
Measurement of Clinical AI Systems’ Functional Performance

As regulators consider how to set the appropriate balance between regulatory 
oversight and access to new AI technology, some options include shifting the 
level of premarket review versus postmarket surveillance for safety and efficacy. 
Enhanced postmarket surveillance presents an attractive possibility to allow 
more streamlined premarket review process for AI technology and reflects the 
likelihood of more frequent product changes over time (FDA, 2019b). Given 
suitable streams of RWE, clinical AI systems are likely to learn on the fly from an 
ongoing data stream because population characteristics and underlying models 
can change. This requires the availability of high-quality labeled RWE as well 
as continuous oversight via postmarket surveillance, because unlike for a more 
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traditional FDA-approved medical device, many clinical AI systems will change 
over time with the addition of new data (FDA, 2019b), though for some models 
and developers the cost of adaptation may exceed the benefits. Especially for 
lower risk software, allowing market access on the basis of less substantial data on 
safety and efficacy and then monitoring carefully as the software is deployed in 
clinical practice may lead to smoother oversight that is still robust. However, prior 
efforts to rely on increased postmarket surveillance have encountered difficulty in 
developer compliance and agency enforcement (Woloshin et al., 2017), although 
the extent of this difficulty is contested (Kashoki et al., 2017).

As part of its Digital Health Innovation Action Plan, FDA is developing the 
Pre-Cert Program, in which certain developers can apply to be precertified based 
on a “robust culture of quality and organizational excellence” and commitment to 
monitoring real-world performance (FDA, 2019c). In the program as envisioned, 
precertified companies will be able to market lower risk SaMD without premarket 
review and will receive a streamlined premarket review for higher risk SaMD. 
FDA will work with developers to collect and interpret real-world information 
to ensure that the software remains safe and effective in the course of real-world 
use (FDA, 2019c), including the potential for updates and changes without further 
review (FDA, 2019b).

Companion Diagnostic Versus Complementar y 
Diagnostic Clinical AIs

Diagnostics that inform the use of drugs, biologics, or therapeutic devices 
come in several regulatory forms. A companion diagnostic is sometimes required 
for drug/biologic/device approval (FDA, 2016b); the in vitro diagnostic device 
(IVD) and the associated therapeutic (i.e., drug, biologic, or other intervention) 
must be cross-labeled, and the IVD is thereafter used as a “gating” criterion for 
prescribing the therapeutic product. A complementary diagnostic, in contrast, 
merely provides additional information relevant to, or supplementary to and 
corroborative of, decisions guiding care of the patient in regard to the associated 
therapeutic product. Complementary diagnostics are not required for FDA 
approval of the associated therapeutic product, and need not be cross labeled. 
Finally, a combination product is a product composed of two or more regulated 
components produced and marketed as a single entity (21 C.F.R. § 3.2(e)). It is 
likely that many clinical AI systems whose hazard analyses indicate that they have 
medium or high risk could be successfully regulated as complementary diagnostic 
medical devices.

Two additional types of diagnostics are not regulated as commercially marketed 
products. An LDT is a type of IVD that is designed, manufactured, and used 
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within a single health services facility for the care of patients for whom named 
clinicians in that facility have responsibility. Diagnostic tests that are not marketed 
commercially beyond the therapeutics development process, clinical trials, and 
regulatory marketing approval are generally referred to by FDA and others as 
development tools. Such tests are established and overseen similarly to other 
development tools such as biomarkers.

Liability Under State Tort Law

State tort law also provides a source of risk and of regulatory pressure for the 
developers and users of clinical AI systems, as well as other AI systems that could 
cause injury but that are not the focus of this section. Briefly, state tort law may make 
the developers or users of clinical AI systems liable when patients are injured as a 
result of using those systems. Such liability could come in the form of malpractice 
liability—that is, potential lawsuits against health providers, hospitals or other health 
care systems, and AI system developers for performing below the standard of care 
(Froomkin et al., 2019). Developers could also face product liability for defects in 
the design or manufacturing of AI systems or for failure to adequately warn users 
of the risks of a particular AI system. By imposing liability for injuries caused by AI 
systems when those injuries could have reasonably been avoided, whether by more 
careful development or more careful use, tort law exerts pressure on developers.

How exactly tort law will deal with clinical AI systems remains uncertain, because 
court decisions are retrospective and the technology is nascent. Tort law is principally 
grounded in state law, and its contours are shaped by courts on a case-by-case basis. 
This area will continue to develop. Three factors influencing tort liability are of 
particular note: the interaction of FDA approval and tort liability, liability insurance, 
and the impact of transparency on tort liability. To be clear, this area of law is still 
very much developing, and this section only sketches some of the ways different 
aspects of health care AI systems may interact with the system of tort liability.

Interaction of FDA Approval and Tort Liability

Different regulatory pathways influence the availability of state tort lawsuits 
against AI developers and, indirectly, the ability of state tort law (and liability 
insurers reacting to that law) to create independent incentives for the safe 
and effective development of clinical AI systems. In general, states may not 
establish statutory requirements that are “different from, or in addition to” FDA 
requirements regulating devices (21 U.S.C. § 360k). The U.S. Supreme Court has 
also held that this preempts certain state tort lawsuits alleging negligent design 
or manufacturing. For devices, including clinical AI apps, that undergo a full 



Health Care Artificial Intelligence: Law, Regulation, and Policy  |  219

premarket approval, state tort lawsuits are generally preempted under the Supreme 
Court’s holding in Riegel v. Medtronic, 552 U.S. 312 (2008). Nevertheless, this 
preemption will not apply to most AI apps, which are likely to be cleared through 
the 510(k) clearance pathway rather than premarket approval. Clearance under the 
510(k) pathway will generally not preempt state tort lawsuits under the reasoning 
of Medtronic v. Lohr, 518 U.S. 470 (1996), because rather than directly determining 
safety and efficacy, FDA finds the new app to be equivalent to an already approved 
product. It is unclear what preemptive effect De Novo classification will have on 
preempting state tort lawsuits, because the Supreme Court emphasized both the 
thoroughness of premarket review and its determination that the device is safe 
and effective, rather than equivalent to an approved predicate device.

State tort lawsuits alleging violations of industry-wide requirements, such 
as CGMP or other validation requirements, are a contestable source of state 
tort liability. Some courts have found that lawsuits alleging violations of state 
requirements that parallel industry-wide requirements are preempted by federal 
law and that such violations may only be addressed by FDA. Other courts disagree, 
and the matter is currently unsettled (Tarloff, 2011). In at least some jurisdictions, 
if app developers violate FDA-imposed requirements, courts may find parallel 
duties under state law and developers may be held liable. Nevertheless, if app 
developers comply with all FDA-imposed industry-wide requirements, states 
cannot impose additional requirements.

Liability Insurance

The possibility of liability creates another avenue for regulation through the 
intermediary of insurance. Developers, providers, and health systems are all likely 
to carry liability insurance to decrease the risk of a catastrophic tort judgment 
arising from potential injury. Liability insurers set rules and requirements regarding 
what information must be provided or what practices and procedures must be 
followed in order to issue a policy. Although insurers are often not considered 
regulators, they can exert substantial, if less visible, pressure that may shape the 
development and use of clinical AI systems (Ben-Shahar and Logue, 2012).

Impact of Transparency on Tort Liability

Transparency and opacity also interact with tort liability. Determining causation 
can already be difficult in medical tort litigation, because injuries may result 
from a string of different actions and it is not always obvious which action or 
combination of actions caused the injury. Opacity in clinical AI systems may 
further complicate the ability of injured patients, lawyers, or providers or health 
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systems to determine precisely what caused the injury. Explainable algorithms may 
make it easier to assess tort liability, as could transparency around data provenance, 
training and validation methods, and ongoing oversight. Perversely, this could 
create incentives for developers to avoid certain forms of transparency as a way 
to lessen the likelihood of downstream tort liability. On the other hand, courts—
or legislatures—could mandate that due care, in either the development or use 
of clinical AI tools, requires some form of transparency. To take a hypothetical 
example, a court might one day hold that when a provider relies on an algorithmic 
diagnosis, that provider can only exercise due care by assessing how the algorithm 
was validated. Developers or other intermediaries would then need to provide 
sufficient information to allow that assessment.

PRIVACY, INFORMATION, AND DATA

Regulation regarding patient privacy and data sharing is also highly relevant 
to AI development, implementation, and use, whether clinical AI or AI used for 
other health care purposes (“health care AI”). The United States lacks a general 
data privacy regime, but HIPAA includes a Privacy Rule that limits the use and 
disclosure of protected health information (PHI)—essentially any individually 
identifiable medical information—by covered entities (i.e., almost all providers, 
health insurers, and health data clearinghouses) and their business associates 
where the business relationship involves PHI (45 C.F.R. § 160.103). Covered 
entities and business associates may only use or disclose information with patient 
authorization, if the entity receives a waiver from an institutional review board or 
privacy board, or for one of several exceptions (45 C.F.R. § 164.502). These listed 
exceptions include the use and disclosure of PHI for the purposes of payment, 
public health, law enforcement, or health care operations, including quality 
improvement efforts but not including research aimed at creating generalizable 
knowledge (45 C.F.R. § 164.501). For health systems that intend to use their own 
internal data to develop in-house AI tools (e.g., to predict readmission rates or the 
likelihood of complications among their own patients), the quality improvement 
exception will likely apply. Even when the use or disclosure of information is 
permitted under HIPAA, the Privacy Rule requires that covered entities take 
reasonable steps to limit the use or disclosure to the minimum necessary to 
accomplish the intended purpose. While HIPAA does create protections for 
patient data, its reach is limited, and health information can come from many 
sources that HIPAA does not regulate (Price and Cohen, 2019).

A complex set of other laws may also create requirements to protect patient 
data. HIPAA sets a floor for data privacy, not a ceiling. State laws may be more 
restrictive; for instance, some states provide stronger protections for especially 
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sensitive information such as HIV status or substance abuse information (e.g., 
N.Y. Pub. Health Law § 2783). California’s Consumer Protection Act creates 
general protections for consumer information, including health data. And although 
the European Union’s GDPR focuses on actions that directly affect the European 
Union, it also places limits on the processing of data about EU residents, regardless 
of where the EU citizen resides globally, and may therefore affect the privacy 
practices of non-EU entities engaged in medical AI development (Marelli and 
Testa, 2018). The GDPR generally requires legal and real persons to collect and 
process only as much personal data as necessary, obtain such data only for a listed 
legitimate purpose or with consent, notify individuals of the receipt of data, and 
engage in privacy-centered policy design. Health data are especially protected under 
the GDPR, and their processing is prohibited unless with explicit consent or in a 
number of specified exceptions, such as for health operations or scientific research.

Privacy and Patient Consent Issues in Health Care AI

With regard to discrete clinical data, unstructured textual data, imagery data, 
waveform and time-series data, and hybrid data used in clinical AI models, the 
development and deployment of AI systems have complex interactions with 
privacy concerns and privacy law (e.g., Loukides et al., 2010). Adequate oversight 
of clinical AI systems must address the nature of potential privacy concerns 
wherever they may arise, approaches to address those concerns, and management 
of the potential tension between privacy and other governance concerns for 
clinical AI.

Initial AI Development

Privacy concerns occur in the first instance because training health care AI 
depends on assembling large collections of health data about patients (Horvitz 
and Mulligan, 2015). Health data about individuals are typically considered 
sensitive. Some forms of data are particularly sensitive, such as substance abuse 
data or sexually transmitted disease information (Ford and Price, 2016). Other 
forms of data raise privacy concerns about the particular individual, such as 
genetic data that can reveal information about family members (Ram et al., 
2018). Collecting, using, and sharing patient health data raise concerns about the 
privacy of the affected individuals, whether those concerns are consequentialist 
(e.g., the possibility of future discrimination based on health status) or not (e.g., 
dignitary concerns about others knowing embarrassing or personal facts) (Price 
and Cohen, 2019). The process of collecting and sharing may also make data 
more vulnerable to interception or inadvertent access by other parties.
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External Validation

External validation of clinical AI systems creates other avenues for privacy 
harms. Some proposals have called for third-party validation of medical AI 
recommendations and predictions to validate algorithmic quality (Ford and Price, 
2016; Price, 2017a). Such an approach would either require making patient data 
available to those third parties or require the AI developer to have a partnership 
with a data owner, where data scientists ensure comparable data transformation 
and algorithm execution to provide external validation without direct data sharing.

Inference Generation

A third form of potential privacy harm that could arise from health care AI is 
quite different and involves the generation of inferences about individual patients 
based on their health data. Machine learning makes predictions based on data, and 
those predictions may themselves be sensitive data, or may at least be viewed that 
way by patients. In one highly publicized example of such a case, Target identified 
a teenage woman’s pregnancy based on changes in her purchasing habits and then 
sent her targeted coupons and advertisements, which led to her father learning 
of her pregnancy from Target before his daughter had shared the news (Duhigg, 
2012). The epistemic status of this information is debatable; arguments have been 
made that inferences cannot themselves be privacy violations, although popular 
perception may differ (Skopek, 2018).

Some standard privacy-protecting approaches of data collectors and users face 
difficulties when applied to health care AI. The most privacy-protective approach 
limits initial data collection to necessarily limit the potential for problematic 
use or disclosure (Terry, 2017). However, this approach presumes that the data 
collector knows which data are necessary and which are not, knowledge that is 
often absent for health care AI.

De-Identification

De-identification, a common privacy-protecting approach, raises several 
concerns. Under the HIPAA Privacy Rule, patient information is not considered 
PHI (and thus not subject to the rule’s restrictions on use and disclosure) if a 
set of 17 listed pieces of identifying information have been removed (45 C.F.R. 
§ 164.514(b)(2)(i)). These listed pieces include at least some elements that may be 
useful to health care AI, such as key dates, zip codes, or photographs of the patient. 
Thus, de-identification can lead to the loss of relevant data.

De-identification also raises two diametrically opposed concerns about 
gathering data. On the one hand, de-identification can lead to data fragmentation. 
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Patient data are gathered in many different contexts, including by different 
providers and different insurers. This diffuse data collection occurs both laterally, 
as patients encounter different parts of the medical system at the same time, and 
longitudinally, as patients shift between different medical environments over the 
course of time. Identifying information provides the easiest way to reassemble 
different parts of patient records into more comprehensive datasets that can help 
drive at least some forms of health care AI (e.g., long-term predictions of efficacy 
or mortality). When identifying information is removed from patient data, 
reassembly becomes harder, especially for developers with fewer resources. On the 
other hand, de-identification is not proof against re-identification (Ohm, 2010). 
Re-identification can happen at the level of the individual (via targeted efforts) 
or more broadly across datasets. “Data triangulation” refers to the idea that if data 
gatherers can collect multiple datasets that include some overlapping information, 
and if some of those datasets include identifying information, then data users 
can merge those datasets and identify individuals in the otherwise de-identified 
datasets (Mello and Cohen, 2018; Terry, 2017). Under current law, covered entities 
are limited in how they can re-identify data, since once it is re-identified it is 
again governed by HIPAA restrictions, but this does not govern those that are not 
covered entities. In addition, data-sharing agreements often include provisions 
prohibiting efforts at re-identification by the data recipient (Ohmann et al., 2017).

Individual consent and authorization provide the clearest possible path toward 
ameliorating privacy concerns but raise their own complications. When individuals 
know the purposes for which their information will be used and can give meaningful 
informed consent to those uses, privacy concerns can be limited. For machine 
learning and health care AI, however, future uses may be unpredictable. The revised 
Common Rule does allow for the provision of broad consent for unspecified future 
use (45 C.F.R. § 46.116). Nevertheless, systematic differences between those willing 
to consent to future data use and those unwilling to consent—or unable to consent 
because they lack that entry into the health data system—means that relying on 
individual authorization can introduce bias into datasets (Spector-Bagdady, 2016). 
Furthermore, the more meaningful the individual opportunity to consent, the 
higher the procedural hurdles created for the assembly of data—and the greater 
the likelihood of eventual bias. The Office of the National Coordinator for Health 
Information Technology has developed a Model Privacy Notice to “help developers 
convey information about their privacy and security policies” (ONC, 2018).

Data Infrastructure

The availability of data is an underlying legal and regulatory challenge for 
clinical AI system development, which requires large amounts of data for training 
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and validation purposes. Once particular AI systems are deployed in the real world, 
RWD should be collected to ensure that the AI systems are performing well and, 
ideally, to improve that performance. However, numerous hurdles exist to the 
collection of sufficient data (Price, 2016). Various privacy laws, as described above, 
restrict the collection of identifiable information, and de-identified information can 
be difficult to assemble to capture either long-term effects or data across different 
data sources. Informed consent laws, such as the Common Rule for federally 
funded research or the consent requirements incorporated into the GDPR, create 
additional barriers to data collection. Even where privacy or informed consent 
rules do not actually prohibit the collection, use, or sharing of data, some health care 
actors may limit such actions out of an abundance of caution, creating a penumbra 
of data limitations. In addition, for those actors who do find ways around these 
requirements, criticism and outrage may arise if patients feel they are inadequately 
compensated for their valuable data. On an economic level, holders of data have 
strong incentives to keep data in proprietary siloes to derive competitive advantage, 
leading to more fragmentation of data from different sources. For data holders who 
wish to keep data proprietary for economic reasons, referencing privacy concerns 
can provide a publicly acceptable reason for these tactics.

At least four possibilities emerge for collection of data, with some evidence of 
each in current practice:

1.   Large individual data holders: Some large holders of individual data 
possess enough data to train AI models on their own, such as health systems 
(e.g., Partners or Ascension), health care payers (e.g., United Healthcare or 
Humana), or tech/data companies (e.g., Google or Apple).

2.   Data brokers and collaboration: The collaboration or collection of data 
from different sources is possible, but these endeavors often encounter the 
hurdles described above, which may introduce limitations on data sources or 
bias in the incorporation process.

3.   Failure to collect data: In some instances, no actor may have the incentive 
or ability to collect and gather data. This may be a problem especially for 
otherwise underserved populations, whose data may be under-represented in 
AI development and monitoring efforts.

4.   Government data infrastructure: Governmental agencies can collect 
health data as part of an effort to support future innovation in clinical AI 
(among other efforts). The Precision Medicine Initiative’s All of Us cohort 
is an example of such an effort (Frey et al., 2016; NIH, 2019), as is the 
U.S. Department of Veterans Affairs’ Million Veteran Program (Gaziano 
et al., 2016), although the latter has more restrictive policies for its data use 
(Price, 2017b).
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Of the four models, the first three are the straightforward results of current 
market dynamics. Each creates challenges, including smaller dataset size, potential 
bias in collection, access for other developers or for validators, and, in the case 
of failures to collect data, exclusion of some populations from AI development 
and validation. Government data infrastructure—that is, data gathered via 
government efforts for the purposes of fostering innovation, including clinical 
AI—has the greatest possibility of being representative and available for a variety 
of downstream AI uses but also faces potential challenges in public will for its 
collection. Even when the government itself does not collect data, it can usefully 
promulgate standards for data collection and consolidation (Richesson and 
Krischer, 2007; Richesson and Nadkarni, 2011); the lack of standards for EHRs, 
for instance, has led to persistent problems aggregating data across contexts.

Tension Between Privacy and Data Access

In general, there is tension between privacy-protecting approaches and access 
to big data for the development, validation, and oversight of health care AI. For 
instance, Google was sued for privacy violations in 2019 as a result of an agreement 
with the University of Chicago Medical Center to use the system’s data in AI and 
other big data applications (Cohen and Mello, 2019). Higher protections for patient 
data, whether regarding front-end collection or back-end use, increase the hurdles 
for the development of health care AI (Ford and Price, 2016). These hurdles may 
also exacerbate differences in capabilities between large, sophisticated entities—
that is, health systems, health insurers, or large technology companies—and smaller 
developers that may lack the resources to develop AI in a privacy-protective fashion. 
However, privacy and innovation in health care AI are not in strict opposition. 
Newer technological approaches such as differential privacy (Malin et al., 2013) 
and dynamic consent (Kaye et al., 2014) can help enable development while still 
protecting privacy. In fact, the desire to protect privacy can be its own spur to 
the development of innovative technologies to collect, manage, and use health 
data. Nevertheless, resolving this tension presents a substantial ongoing challenge, 
one familiar in the development of a learning health system more generally. This 
resolution will not be simple and is beyond the scope of this chapter; it will demand 
careful policy making and continued engagement by stakeholders at various levels.

KEY CONSIDERATIONS

In summary, clinical AI tools present opportunities for improving patients’ 
and clinicians’ point-of-care decision making, and a viable business model is 
necessary to ensure that safe, effective clinical AI systems are developed, validated, 
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and sustainably deployed, implemented in EHR systems, and curated over time 
to maintain adequate accuracy and reliability. However, clinical AI systems could 
potentially pose risks in terms of inappropriate treatment recommendations, 
privacy breaches, or other harms (Evans and Whicher, 2018), and some types of 
clinical AI systems will be classified by regulatory agencies as SaMDs, subject to 
premarket clearance or approval and other requirements that aim to protect the 
public’s health. Other clinical AI tools may be deemed to be LDT-type services, 
subject to CLIA and similar regulations. Whatever agency is involved in oversight, 
compliance with regulations should be mandatory rather than voluntary, given the 
potential for problematic incentives for system developers (Evans and Whicher, 
2018). As the law and policy of health care AI systems develop over time, it is 
both expected and essential that multiple stakeholders—including payers, patients 
and families, policy makers, diagnostic manufacturers and providers, clinicians, 
academics, and others—remain involved in helping determine how best to ensure 
that such systems advance the quintuple aim and improve the health care system 
more generally.

• The black box nature of a clinical AI system should not disqualify a system from 
regulatory approval or use, but transparency, where possible, can aid in oversight 
and adoption and should be encouraged or potentially required. AI systems, 
including black box systems, should be capable of providing the users with an 
opportunity to examine quantitative evidence that the recommendation in 
the current situation is indeed the best recent historical choice, supplying de-
identified, aggregated data sufficient for the user to satisfy the user’s interest in 
confirming that this is so, or is at least no worse and no more uncertain than 
decisions the user would take independently were the AI not involved.

•  When possible, machine learning–based predictive models should be evaluated 
in an independent dataset (i.e., external validation) before they are adopted in 
the clinical practice. Risk assessment to determine the degree to which dataset-
specific biases affect the model should be undertaken. Regulatory agencies 
should recommend specific statistical methods for evaluating and mitigating 
bias.

•  To the extent that machine learning–based models continuously learn from 
new data, regulators should adopt postmarket surveillance mechanisms to 
ensure continuing (and ideally improving) high-quality performance.

•  Regulators should engage in collaborative governance efforts with other 
stakeholders and experts throughout the health system, including data scientists, 
clinicians, ethicists, and others, to continuously evaluate deployed clinical AI 
for effectiveness and safety on the basis of RWD.
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•  Government actors should invest in infrastructure that enables equitable, high-
quality data collection, such as technical standards and technological capability 
building.

•  Government actors should continue and increase efforts to develop large, 
high-quality, voluntary health datasets for clinical AI development (among 
other purposes), such as the All of Us cohort within the Precision Medicine 
Initiative, while ensuring adequate measures to address patient notice and 
potential harms.
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ARTIFICIAL INTELLIGENCE IN HEALTH CARE: 
HOPE NOT HYPE, PROMISE NOT PERIL

Michael Matheny, Vanderbilt University Medical Center 
and U.S. Department of Veterans Affairs; Sonoo Thadaney Israni, 

Stanford University; Danielle Whicher, National Academy of Medicine; 
and Mahnoor Ahmed, National Academy of Medicine

INTRODUCTION

Health care delivery in the United States, and globally, continues to face 
significant challenges from the increasing breadth and depth of data and 
knowledge generation. This publication focuses on artificial intelligence (AI) 
designed to improve health and health care, the explosion of electronic health 
data, the significant advances in data analytics, and mounting pressures to reduce 
health care costs while improving health care equity, access, and outcomes. AI tools 
could potentially address known challenges in health care delivery and achieve 
the vision of a continuously learning health system, accounting for personalized 
needs and preferences. The ongoing challenge is to ensure the appropriate and 
equitable development and implementation of health care AI. The term AI is 
inclusive of machine learning, natural language processing, expert systems, 
optimization, robotics, speech, and vision (see Chapter 1), and the terms AI tools, 
AI systems, and AI applications are used interchangeably.

While there have been a number of promising examples of AI applications 
in health care (see Chapter 3), it is judicious to proceed with caution to avoid 
another AI winter (see Chapter 2), or further exacerbate health care disparities. 
AI tools are only as good as the data used to develop and maintain them, and 
there are many limitations with current data sources (see Chapters 1, 3, 4, 
and 5). Plus, there is the real risk of increasing current inequities and distrust 
(see Chapters 1 and 4) if AI tools are developed and deployed without thoughtful 
preemptive planning, self-governance, trust-building, transparency, appropriate 
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levels of automation and augmentation (see Chapters 3, 4, and 5), and regulatory 
oversight (see Chapters 4, 5, 6, and 7).

This publication synthesizes the major literature to date, in both the academic 
and general press, to create a reference document for health care AI model 
developers, clinical teams, patients, “fRamilies,” and regulators and policy 
makers to:

1.   identify the current and near-term uses of AI within and outside the traditional 
health care systems (see Chapters 2 and 3);

2.   highlight the challenges and limitations (see Chapter 4) and the best practices 
for development, adoption, and maintenance of AI tools (see Chapters 5 
and 6);

3.   understand the legal and regulatory landscape (see Chapter 7);
4.   ensure equity, inclusion, and a human rights lens for this work; and
5.   outline priorities for the field.

The authors of the eight chapters are experts convened by the National 
Academy of Medicine’s Digital Health Learning Collaborative to explore the 
field of AI and its applications in health and health care, consider approaches for 
addressing existing challenges, and identify future directions and opportunities.

This final chapter synthesizes the challenges and priorities of the previous 
chapters, highlights current best practices, and identifies key priorities for the field.

SUMMARY OF CHALLENGES AND KEY PRIORITIES

This section summarizes the key findings and priorities of the prior chapters 
without providing the underlying evidence or more detailed background. Please 
refer to the referenced chapters for details.

Promote Data Access,  Standardization, and Reporting of 
Data Quality,  While Minimizing Data Bias

It is widely accepted that the successful development of an AI system requires 
high-quality, population-representative, and diverse data (Shrott, 2017; Sun 
et al., 2017). Figure 8-1 outlines a standardized pathway for the collection 
and integration of multiple data sources into a common data model, which 
efficiently feeds the transformation to a feature space for AI algorithm training. 
However, some of the standardization tools and data quality assessments and 
methodologies for curating the data do not yet exist. Interoperability is critical at 
all layers, including across the multivendor electronic health record and ancillary 
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FIGURE 8-1 | Recommended data standardization framework to promote artificial intelli-
gence system development from high-quality, transparent, and interoperable data.
SOURCE: Developed for this publication by Jay Christian Design.
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components of a health care system, between different health care systems, and 
with consumer health applications. We cannot disregard the fact that there are 
varying data requirements for the training of AI and for the downstream use 
of AI. Some initiatives do exist and are driving the health care community in 
the direction of interoperability and data standardization, but they have yet to 
see widespread use (HL7, 2018; Indiana Health Information Exchange, 2019; 
NITRD et al., 2019; OHDSI, 2019).

Methods to assess data validity and reproducibility are often ad hoc. Ultimately, 
for AI models to be trusted, the semantics and provenance of the data used 
to derive them must be fully transparent, unambiguously communicated, and 
available, for validation at least, to an independent vetting agent. This is a distinct 
element of transparency, and the conflation of data transparency with algorithmic 
transparency complicates the AI ecosystem’s discourse. We suggest a clear 
separation of these topics. One example of a principles declaration that promotes 
data robustness and quality is the FAIR (findability, accessibility, interoperability, 
and reusability) Principles (Wilkinson et al., 2016).

These principles, put forth by molecular biology and bioinformatics researchers, 
are not easily formalized or implemented. However, for health care AI to mature, 
a similar set of principles should be developed and widely adopted.

The health care community should continue to advocate for policy, regulatory, 
and legislative mechanisms that improve the ease of data aggregation. These 
would include (but are not limited to) a national patient health care identifier 
and mechanisms to responsibly bring together data from multiple sources. The 
debate should focus on the thoughtful and responsible ability of large-scale health 
care data resources to serve as a public good and the implications of that ability. 
Discussions around wider and more representative data access should be carefully 
balanced by stronger outreach, education, and consensus building with the public 
and patients in order to address where and how their data can be reused for AI 
research, data monetization, and other secondary uses; which entities can reuse 
their data; and what safeguards need to be in place. In a recent commentary, 
Glenn Cohen and Michelle Mello propose that “it is timely to reexamine the 
adequacy of the Health Insurance Portability and Accountability Act (HIPAA), 
the nation’s most important legal safeguard against unauthorized disclosure 
and use of health information. Is HIPAA up to the task of protecting health 
information in the 21st century?” (Cohen and Mello, 2018).

When entities bring data sources together, they face ethical, business, legislative, 
and technical hurdles. There is a need for novel solutions that allow for robust 
data aggregation while promoting transparency and respecting patient privacy 
and preferences.
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Prioritize Equitable and Inclusive Health Care

In addition, these solutions need to be equitable to avoid a potential conundrum 
(see Chapters 1 and 4) in which patients, especially those who are the least 
AI-savvy, are unaware of how their data are monetized. “That which is measured, 
improves,” opined Karl Pearson, famed statistician and founder of mathematical 
statistics. Therefore, prioritizing equity and inclusion should be a clearly stated 
goal when developing and deploying AI in health care. It is imperative for 
developers and implementers to consider the data used to develop AI tools and 
unpack the underlying biases in that data. It is also essential to consider how the 
tool should be deployed, and whether the range of deployment environments 
could impact equity and inclusivity. There are widely recognized inequities in 
health outcomes due to the social determinants of health (BARHII, 2015) and 
the perverse incentives in existing health care systems (Rosenthal, 2017).

Unfortunately, consumer-facing technologies have often exacerbated historical 
inequities in other fields, and the digital divide continues to be a reality for 
wearables deployment and the data-hungry plans they require, even if the initial 
cost of the device is subsidized. As Cathy O’Neil reported in Weapons of Math 
Destruction, AI and related sciences can exacerbate inequity on a monumental 
scale. The impact of a single biased human is far less than that of a global or 
national AI (O’Neil, 2017).

Data transparency is key to ensuring AI adopters can assess the underlying data 
for biases and to consider whether the data are representative of the population 
in which the AI tool will be deployed. The United States has some population-
representative datasets, such as national claims data, and high levels of data capture in 
certain markets (such as the Indiana Health Information Exchange). But, in many 
instances AI is being developed with data that are not population-representative, 
and while there are efforts to link health care data to the social determinants of 
health, environmental, and social media data to obtain a comprehensive profile of 
a person, this is not routine. Nor are there ethical or legal frameworks for doing 
so. It is imperative that we develop and standardize approaches for evaluating and 
reporting on data quality and representativeness. It is equally vital that we ensure 
and report on the diversity of gender, race, age, and other human characteristics 
of AI development teams to benefit from their much-needed diverse knowledge 
and life experiences (see Chapters 1 and 5).

Executing and delivering on equity and inclusion will require a new governance 
framework. Current self-governance efforts by technology companies are plagued 
with numerous struggles and failures, Google’s April 2019 Ethics Board dissolution 
being one recent example (Piper, 2019). Mark Latonero suggests, “In order for 
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AI to benefit the common good, at the very least its design and deployment 
should avoid harms to fundamental human values. International human rights 
provide a robust and global formulation of those values” (Latonero, 2018).

For objective governance, a new neutral agency or a committee within an 
existing governmental or nongovernmental entity, supported by a range of 
stakeholders, could own and manage the review of health care AI products and 
services while protecting developers’ intellectual property rights. One example 
of this type of solution is the New Model for Industry-Academic Partnerships, 
which developed a framework for academic access to industry (Facebook) data 
sources: The group with full access to the data is separate from the group doing 
the publishing, but both are academic, independent, and trusted. The group with 
full access executes the analytics and verifies the data, understands the underlying 
policies and issues, and delivers the analysis to a separate group who publishes the 
results but does not have open access to the data (Social Science Research Council, 
2019). To ensure partisan neutrality, the project is funded by ideologically diverse 
supporters, including the Laura and John Arnold Foundation, the Democracy 
Fund, the William and Flora Hewlett Foundation, the John S. and James L. Knight 
Foundation, the Charles Koch Foundation, the Omidyar Network, and the Alfred 
P. Sloan Foundation. Research projects use this framework when researchers use 
Facebook social media data for election impact analysis, and Facebook provides 
the data required for the research but does not have the right to review or approve 
the research findings prior to publication.

Perhaps the best way to ensure that equity and inclusion are foundational 
components of a thriving health care system is to add them as a dimension to the 
quadruple aim, expanding it to a Quintuple Aim for health and health care: better 
health, improved care experience, clinician well-being, lower cost, and health 
equity throughout (see Figure 8-2).

Promote a Spectrum of Transparency-Based Trust,  Based on 
Considerations of Accuracy, Risk, and Liability

A key challenge to the acceptance and widespread use of AI is the tension 
between data and algorithmic transparency, accuracy, perceived risk, and tort 
liability. One of the priorities identified in this publication is the need to present 
each health care AI tool along with the spectrum of transparency related to the 
potential harms and context of its use. Evaluating and addressing appropriate 
transparency in each subdomain of data, algorithms, and performance, and 
systematically reporting it must be a priority. In addition, health system leaders 
must understand the return on investment and the risks and benefits of adoption, 
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including the risks of adverse events post-implementation; and informatics 
implementers must understand the culture and workflows where AI tools will 
be used so the algorithms can be adjusted to reflect their needs. All stakeholders 
should prioritize equity and inclusion, requiring transparency on how AI tools 
are monitored and updated. Many of these are shared, not siloed, responsibilities.

In all cases, the transparency of the underlying data used for AI model 
generation should be endorsed. While granular, patient-level data should not be 
publicly shared, publishing information on the data sources from which they 
were aggregated; how the data were transformed; data quality issues; inclusion 
and exclusion criteria that were applied to generate the cohort; summary 
statistics of demographics; and relevant data features in each source should be 
conventional practice. This information could be a supporting document and 
would tremendously improve the current understanding of and trust in AI tools.

The need for algorithmic transparency is largely dependent on the use context. 
For applications that have immediate clinical impact on patient quality of life or 
health outcomes, the baseline requirement for transparency is high. However, the 
level of transparency could be different depending on the (1) known precision 
accuracy of the AI; (2) clarity of recommended actions to end users; (3) risk 
to the patient or target; and (4) legal liability. For example, if an AI tool has 
high-precision accuracy and low risk, provides clear recommendations to the 

FIGURE 8-2 | The Quintuple Aim to ensure equity and inclusion are stated and measured 
goals when designing and deploying health care interventions.
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FIGURE 8-3 | Summary of relationships between requirements for transparency and the 
three axes of patient risk, user trust, and algorithm performance within three key domains: 
data transparency, algorithmic transparency, and product/output transparency.
NOTE: While not comprehensive, examples of how different users and use cases require different levels of transparency 

in each of these three domains.

end user, and is unlikely to impose legal liability on the institution, manufacturer, 
or end user, then the need for complete algorithmic transparency is likely to be 
lower. See Figure 8-3 for additional details on the relationships of transparency 
and these axes within different conceptual domains.

Focus of Near-Term Health Care AI: 
Augmented Intelligence Versus Full  Automation

Although some AI applications for health care business operations are likely to 
be poised for full automation, most of the near-term dialogue around AI in health 
care should focus on promoting, developing, and evaluating tools that support 
human cognition rather than replacing it. Popular culture and marketing have 
overloaded the term “AI” to the point where it means replacing human labor, 
and as a result, other terms have emerged to distinguish AI that is used to support 
human cognition. Augmented intelligence refers to the latter, which is the term 
the authors of this chapter endorse.
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The opportunity for augmenting human cognition is vast, from supporting 
clinicians with less training in performing tasks currently limited to specialists to 
filtering out normal or low-acuity clinical cases so specialists can work at the top 
of their licensure. Additionally, AI could help humans reduce medical error due 
to cognitive limits, inattention, micro-aggression, or fatigue. In the case of surgery, 
it might offer capabilities that are not humanly possible.

Opportunities exist for automating some business processes, and greater 
automation is possible as the field matures in accuracy and trust. But it would 
not be prudent to deploy fully automated AI tools that could result in inaccuracy 
when the public has an understandably low tolerance for error, and health care 
AI lacks needed regulation and legislation. This is most likely to create a third 
AI Winter or a trough of disillusionment as seen in the Gartner Hype Cycle 
(see Chapter 4).

Differential levels of automation are even more relevant to consumer health 
applications because they are likely to have more automation components, but are 
regulated as entertainment applications, and their standards and quality controls 
are much more variable. The quandaries here are perhaps even more dire given 
consumer health applications’ widespread use and the difficulties of tracking and 
surveilling potential harms that could result from their use in the absence of 
expert oversight.

Develop Appropriate Professional Health Training and 
Educational Programs to Support Health Care AI

Stanford Univerity’s Curt Langlotz, offered the following question and answer: 
“Will AI ever replace radiologists? I say the answer is no—but radiologists who 
use AI will replace radiologists who don’t” (Stanford University, 2017).

In order to sustain and nurture health care AI, we need a sweeping, 
comprehensive expansion of relevant professional health education focused on 
data science, AI, medicine, humanism, ethics, and health care. This expansion 
must be multidisciplinary and engage AI developers, implementers, health care 
system leadership, frontline clinical teams, ethicists, humanists, and patients and 
“fRamilies,” because each brings essential expertise and AI progress is contingent 
on knowledgeable decision makers balancing the conflicting pressures of the 
relative ease of implementing newly developed AI solutions while understanding 
their validity and influence on care.

To begin addressing challenges, universities such as the Massachusetts Institute 
of Technology, Harvard, Stanford, and The University of Texas have added 
new courses focused on the embedding ethics into their development process. 
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Mehran Sahami, a Stanford University computer science faculty member who 
formerly worked at Google as a senior research scientist said, “Technology is 
not neutral. The choices that get made in building technology then have social 
ramifications” (Singer, 2018).

Health care professionals have requirements for continuing education as part 
of their scope of practice; we suggest that new continuing education AI curricula 
be developed and delivered. Some important topics that should be covered are 
how to (1) assess the need, validity, and applicability of AI algorithms in clinical 
care; (2) understand algorithmic performance and the impact on downstream 
clinical use; (3) navigate medical liability and the ways in which AI tools may 
impact individual and institutional liability and medical error; (4) advocate for 
standardization and appropriate transparency for a given use case; (5) discuss 
emerging AI technologies, their use, and their dependence on patient data with 
patients and “fRamilies” and the patient–clinician relationship; (6) ensure the 
Quintuple Aim of equity and inclusion when measuring impact; and (7) know 
when and how to bring in AI experts for consults. As the field evolves, the nature and 
emphasis of these topics will change, necessitating periodic review and updating.

Professional health education should incorporate how to critically evaluate 
the utility and risk of these AI tools in clinical practice. Curricula should provide 
an understanding of how AI tools are developed, the criteria and considerations 
for the use of AI tools, how best to engage and use such tools while prioritizing 
patient needs, and when human oversight is needed.

For health care system leadership and AI implementers, it is important to have 
training on the importance and lenses of the multiple disciplines that must be 
brought together to evaluate, deploy, and maintain AI in health care.

Current clinical training programs bear the weight of growing scientific 
knowledge within a static time window of training. We recognize the impracticality 
of each clinician or team being an expert on all things health care–AI related. Instead, 
we propose that each team has a basic and relevant understanding as described and 
adds an AI consult when and where needed. Such consults could be done virtually, 
supporting the team effort and group decision making, and costing less than if they 
were done onsite. Regional or content-expert AI consults could be leveraged across 
many health care systems. One example of such regional consults is the National 
Institutes of Health–funded Undiagnosed Diseases Network (UDN), which seeks 
“to improve and accelerate diagnosis of rare and undiagnosed conditions (NIH, 
2019). The UDN uses both basic and clinical research to improve the level of 
diagnosis and uncover the underlying disease mechanisms associated with these 
conditions.” National (or global) efforts like this can support the building and 
deployment of responsible AI solutions for health care.
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It is necessary to develop retraining programs to target job categories that are 
likely to be the most susceptible to a shift in desired skill sets with AI deployment. 
It is unlikely that many health care jobs will be lost, but skill and knowledge 
mismatches are to be expected (see Chapter 4).

Articulate Success Factors for the Development, Adoption, 
and Maintenance of AI in Health Care

In order to implement AI tools in health care settings with sustained 
success, it is important that system leadership, AI developers, AI implementers, 
regulators, humanists, and patients and “fRamilies” collaboratively build a shared 
understanding and expectations. The success factors for development, adoption, 
and maintenance of AI tools will need clarity, acknowledging that practices will 
differ depending on the physical, psychological, or legal risk to the end user, 
the adoption setting, the level of augmentation versus automation, and other 
considerations. Dissonance between levels of success and users’ expectations 
of impact and utility are likely to create harm and disillusionment. Below, we 
summarize the key components that must be wrangled.

The global health care AI community must develop integrated best-practice 
frameworks for AI implementation and maintenance, balancing ethical inclusivity, 
software development, implementation science, and human–computer interaction. 
These frameworks should be developed within the context of the learning 
health care system and can be tied to various targets and objectives. Earlier 
chapters provide summaries and considerations for both technical development 
(see Chapter 5) and health care system implementation (see Chapter 6). However, 
the AI implementation and deployment domain is still in a nascent stage, and 
health systems should maintain appropriate skepticism about the advertised 
benefits of health care AI.

It is important to approach health care AI as one of many tools for supporting 
the health and well-being of patients. Thus, AI should be deployed to address real 
problems that need solving, and only among those problems in which a simpler 
or more basic solution is inadequate. The complexity of AI has a very real cost to 
health care delivery environments.

Health care AI could go beyond the current limited, biology-focused research to 
address individual patient and communal needs. The current medical enterprise is 
largely focused on the tip of the iceberg (i.e., human biology), lacking meaningful 
and usable access to relevant patient contexts such as social determinants of health 
and psychosocial risk factors. AI solutions have the potential (with appropriate 
consent) to link personal and public data for truly personalized health care. 
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The April 2019 collaborative effort by UnitedHealthcare and the American 
Medical Association to create nearly two dozen International Classification of 
Diseases, Tenth Revision, codes to better incorporate social determinants of health 
into health care delivery is a laudable and responsible step in the right direction 
(Commins, 2019).

AI should be considered where scale is important and resources are insufficient 
for current needs. Some of these environments include complex patients with 
multiple comorbid conditions, such as chronic disease sufferers and the elderly, 
or low-resource settings. For innovative telehealth—disaster relief and rural 
areas—when resources are limited and access difficult, triaging or auto-allocating 
resources can be powered by AI solutions. Current mobile technology allows for 
critical imaging at the local site, and the U.S. Department of Veterans Affairs has 
operationalized a robust telehealth program that serves its very diverse population 
(VA, 2016).

We strongly suggest that a robust and mature underlying information 
technology governance strategy be in place within health care delivery systems 
prior to embarking on substantial AI deployment and integration. The needs for 
on- or offsite hardware infrastructure, change management, inclusive stakeholder 
engagement, and safety monitoring all require substantial established resources. 
Systems that do not possess these infrastructure components should develop them 
before significant AI deployment.

Balancing Regulation and Legislation for 
Health Care Innovation

The regulatory and legislative considerations for AI use in consumer and 
professional health care domains are documented in Chapter 7. AI applications 
have great potential to improve patient health but could also pose significant 
risks, such as inappropriate patient risk assessment, treatment recommendations, 
privacy breaches, and other harms (Evans and Whicher, 2018). Overall, the field is 
advancing rapidly, with a constant evolution of access to data, aggregation of data, 
new developments in AI methods, and expansions of how and where AI is added 
to patient health and health care delivery. Regulators should remain flexible, but 
the potential for lagging legislation remains an issue.

In alignment with recent congressional and U.S. Food and Drug Administration 
developments and guidance, we suggest a graduated approach to the regulation 
of AI based on the level of patient risk, the level of AI autonomy, and how static 
or dynamic certain AI tools are likely to be. To the extent that machine learning–
based models continuously learn from new data, regulators should adopt 
postmarket surveillance mechanisms to ensure continuing (and ideally, improving) 
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high-quality performance. Liability accrued within the deployment of various 
contexts of AI will continue to be a developing area as regulators, courts, and the 
insurance industry weigh in. Understanding regulation and liability is essential to 
evaluating risks and benefits.

The linkages between innovation, safety, progress, and regulation are complex. 
Regulators should engage in collaborative efforts with stakeholders and experts 
to continuously evaluate deployed clinical AI for effectiveness and safety based 
on real-world data. Throughout that process, transparency can help deliver well-
vetted solutions. To enable both AI development and oversight, governmental 
agencies should invest in infrastructure that promotes wider data collection and 
access to data resources for building AI solutions, within a framework of equity 
and data protection (see Figure 8-4).

The Global Conundrum

The United States and many other nations prioritize human rights values 
and are appropriately measured and thoughtful in supporting data collection, AI 
development, and AI deployment. Other nations, with China and Russia being 
prime examples, have different priorities. The current AI arms race in all fields, 
including and beyond health care, creates a complex and, some argue, untenable 
geopolitical state of affairs (Apps, 2019). Others point out that it is not an AI 
arms race because interdependencies and interconnections among nations are 
needed to support research and innovation. Regardless, Kai Fu Lee outlines 
China’s competitive edge in AI in his 2018 book AI Superpowers: China, Silicon 
Valley, and the New World Order (Lee, 2018). Putin has also outlined a national 

FIGURE 8-4 | Relationship between regulation and risk.
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AI strategy. And in February 2019, the White House issued an Executive Order 
on Maintaining American Leadership in Artificial Intelligence (White House, 
2019). The downstream implications of this AI arms race in health care raise 
questions and conundrums this publication does not cover. We acknowledge they 
are countless and should be investigated.

CONCLUSIONS

AI is poised to make transformative and disruptive advances in health care 
and could improve the lives of patients, “fRamilies” and health care professionals. 
However, we cannot start with an AI hammer in our hands and view every 
problem as the proverbial nail. When balancing the need for thoughtful, inclusive 
health care AI that plans for and actively manages and reduces potential unintended 
consequences while not yielding to marketing hype, we should be guided by the 
adage “haste makes waste” (Sample, 2019). The wisest guidance for AI is to start 
with real problems in health care that need solving, explore the best solutions for 
the problem by engaging relevant stakeholders, frontline users, and patients and 
their “fRamilies”—including AI and non-AI options—and implement and scale 
the ones that meet the Quintuple Aim.

In 21 Lessons for the 21st Century, Yuval Noah Harari writes, “Humans were 
always far better at inventing tools than using them wisely” (Harari, 2018, p. 7).

It is up to us, the stakeholders, experts, and users of these technologies, to ensure 
that they are used in an equitable and appropriate fashion to uphold the human 
values that inspired their creation—that is, better health and wellness for all.
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ADDITIONAL KEY REFERENCE MATERIALS

Author(s) Title Content Summary

Jonathan Bush and 
Stephen Baker

Where Does It Hurt? This book deals with some of the challenges 
in health care and promotes disruptive 
technology as a way to improve and 
transform health care delivery.

Atul Gawande Being Mortal: Medicine and 
What Matters in the End

This book includes information about 
geriatric care, assisted living, nursing home 
care, and hospice care.

Jerome Groopman How Doctors Think This book describes and discusses the clinical 
provider’s mindset, workflow, and biases they 
sometimes bring to interactions with patients.

James R. Knickman 
and Brian Elbel

Jonas & Kovner’s Health Care 
Delivery in the United States, 
12th Edition

This health care textbook targets postgraduate 
education and provides a survey of health care 
in the United States with topics including 
population health, health care cost, health 
information technology, and financing.

T. R. Reid The Healing of America: A 
Global Quest for Better, Cheaper, 
and Fairer Health Care

This book discusses health care in the global 
context, with examples of universal health 
care in other industrialized countries and 
comparisons made to the U.S. system.

Elizabeth Rosenthal An American Sickness: How 
Healthcare Became Big Business 
and How You Can Take It Back

This book describes the for-profit U.S. 
health care system and the history of how it 
has evolved into what it is today.

Leiyu Shi and 
Douglas A. Singh

Essentials of the U.S. Health 
Care System

This book is targeted to post-secondary 
students interested in or pursuing training in 
health disciplines and describes the impact of 
the Patient Protection and Affordable Care 
Act, implementation of Healthy People 2020, 
and the Health Information Technology for 
Economic and Clinical Health Act. It also 
covers clinical provider workforce challenges, 
health disparities, and access-to-care issues.

continued
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Author(s) Title Content Summary

Mark D. Shipley In Search of Good Medicine: 
Hospital Marketing Strategies to 
Engage Healthcare Consumers

This book includes a discussion of the 
organization and management of health care 
organizations and how they market care to 
the public.

Eric Topol The Patient Will See You Now This book discusses how technology and 
the digitization of data can be leveraged to 
improve care and patient health.

Fred Trotter and 
David Uhlman

Hacking Healthcare: A Guide 
to Standards, Workflows, and 
Meaningful Use

This book summarizes some of the key 
issues in the U.S. health care system with 
regard to the adoption of electronic health 
records and other health information 
technology issues that surround its adoption.
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WORKSHOP AGENDA AND PARTICIPANT LIST

National Academy of Medicine Digital Learning Collaborative

November 30, 2017
National Academy of Sciences Building

Room 120
2101 Constitution Avenue, NW

Washington, DC 20418

Meeting Focus: Artificial intelligence and the future of continuous health learning 

and improvement.

Meeting Objectives:

1. Aim: Consider the nature, elements, applications, state of play, and implications of 

artificial intelligence (AI) and machine learning (ML) in health and health care, and 

ways the National Academy of Medicine might enhance collaborative progress.

2. AI/ML opportunities: Identify and discuss areas within health and health care for 

which AL and ML have already shown promise. Consider implications for other 

applications.

3. Barriers: Identify and discuss the practical challenges to the advancement and application 

of AI and ML, including those related to data integration, ethical/regulatory implications, 

clinician acceptance, workforce development, and business case considerations.

Outcomes Intended: Establishment of a charge and charter for an ongoing NAM 

Collaborative Working Group for information sharing and facilitating the application 

of AI and ML for better health.
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8:30 a.m. Coffee and light breakfast available

9:00 a.m. Welcome, introductions, and meeting overview

Welcome from the National Academy of Medicine
Michael McGinnis, National Academy of Medicine

Opening remarks and meeting overview by Collaborative co-chairs
Jonathan Perlin, Hospital Corporation of America, Inc.
Reed Tuckson, Tuckson Health Connections, LLC

9:30 a.m. Artificial intelligence and machine learning: Terms and 
definitions

A “big picture” presentation on the AI/ML field and initial reflections on 
health applications.

Carla Brodley, Northeastern University
Q&A and Open Discussion

10:15 a.m. Break

10:30 a.m. Strategies to enhance data integration to advance AI/ML

This session will focus on the role of data integration and sharing in 
enhancing the capabilities of machine learning algorithms to improve health and 
health care.

Noel Southall, National Institutes of Health
Douglas McNair, Cerner Corporation
Jonathan Perlin and Edmund Jackson, Hospital Corporation of America, Inc.
James Fackler, Johns Hopkins Medicine
Q&A and Open Discussion

11:45 a.m. Break

Participants will pick up lunch.

12:00 p.m. AI/ML opportunities in health and health care

The lunch session will focus on the areas of health care where machine 
learning has the potential to improve patient outcomes, including opportunities 
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for better, faster, cheaper diagnosis, treatment, prevention, self and family care, 
service linkages, and etiologic insights.

Paul Bleicher, OptumLabs
Steve Fihn, University of Washington
Daniel Fabbri, Vanderbilt University
Tim Estes, Digital Reasoning
Q&A and Open Discussion

1:15 p.m. Practical challenges for AI/ML development, spread, 
and scale

Participants will explore the practical challenges related to AI/ML development, 
spread, and scale, including developing the business case, addressing regulatory and 
ethical considerations, and improving clinician acceptance and workforce expertise.

Nigam Shah, Stanford University
Michael Matheny, Vanderbilt University
Seth Hain, Epic Systems
Q&A and Open Discussion

2:30 p.m. The charge for accelerating progress

The aim of this session is to develop a charge and charter for an ongoing NAM 
AI/ML Collaborative Working Group. The charge will outline opportunities for 
the Working Group to address barriers and accelerate progress.

Sean Khozin, U.S. Food and Drug Administration
Javier Jimenez, Sanofi
Leonard D. Avolio, Cyft
Wendy Chapman, University of Utah
Q&A and Open Discussion

3:45 p.m. Next steps

Comments from the chairs
Jonathan Perlin, Hospital Corporation of America, Inc.
Reed Tuckson, Tuckson Health Connections, LLC

Comments and thanks from the National Academy of Medicine
Michael McGinnis, National Academy of Medicine

4:00 p.m. Adjourn
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WORKSHOP AT TENDEES

Chairs:
Jonathan Perlin, MD, PhD, MSHA, 

MACP, FACMI
Chief Medical Officer
Hospital Corporation of America

Reed Tuckson, MD, MD, FACP, 
FACP

Managing Director
Tuckson Health Connections

Participants:
Carlos Blanco, MD, PhD
Director
Division of Epidemiology, Services 

and Prevention Research (DESPR)
National Institute on Drug Abuse

Paul Bleicher, MD, PhD
Chief Executive Officer
OptumLabs

Carla Brodley, MS, PhD
Dean, College of Computer & 

Information Science Professor
Northeastern University

Wendy Chapman, PhD
Chair, Department of Biomedical 

Informatics
University of Utah

Jonathan Chen, MD, PhD
Assistant Professor of Biomedical 

Informatics Research
Stanford University

Leonard D’Avolio, PhD
Founder and Chief Executive Officer
Cyft

Shahram Ebadollahi, MS, PhD
Vice President, Innovations & Chief 

Science Officer
IBM Watson Health Group

Tim Estes
President and Founder
Digital Reasoning

Daniel Fabbri, PhD
Assistant Professor of Biomedical 

Informatics
Vanderbilt University Medical Center

James Fackler, MD
Associate Professor
Director of Safety, Quality, & 

Logistics in the PICU
John Hopkins Medicine

Steve Fihn, MD, MPH, FACP
Division Head, General Internal 

Medicine Professor
University of Washington

Kenneth R. Gersing, MD
Informatics Director
National Center for Advancing 

Translational Sciences
National Institutes of Health
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Seth Hain, MS
Research & Development Product 

Lead, Machine Learning
Epic Systems

Michael Howell, MD, MPH
Chief Clinical Strategist
Google

Brigham Hyde, PhD
Chief Executive Officer
Precision Health Intelligence

Edmund Jackson, PhD
Chief Data Scientist
Hospital Corporation of America

Javier Jimenez, MD, MPH
Vice President, Global Head Real World 

Evidence & Clinical Outcomes
Sanofi

Sean Khozin, MD, MPH
Acting Associate Director, Oncology 

Center of Excellence
U.S. Food & Drug Administration

Hongfang Liu, MS, PhD
Professor of Biomedical Informatics
Mayo Clinic

Jennifer MacDonald, MD
Director of Clinical Innovations and 

Education
U.S. Department of Veterans Affairs

Michael E. Matheny, MD, MS, MPH
Associate Professor
Vanderbilt University

Douglas McNair, MD, PhD
President, Cerner Math Inc.
Cerner Corporation

Wendy Nilsen, PhD
Program Director
National Science Foundation

Matthew Quinn, MBA
Senior Advisor
Health Information Technology
Health Resources and Services 

Administration

Joachim Roski, PhD, MPH
Principal
Booz Allen Hamilton

Robert E. Samuel, DSc
Senior Director, Technology Strategy 

& Research
Aetna

Noel Southall, PhD
Leader, Informatics Division of Pre-

Clinical Innovation
National Institutes of Health

Bob Tavares
Vice President, Business 

Development
Emmi Solutions

Sonoo Thadaney-Israni, MBA
Executive Director, Stanford Presence 

Center
Stanford Medicine
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Howard Underwood, MD, MBA, MS, 
FSA

Vice President, Member Management 
Analytics

Anthem

Shawn Wang, MBA
Vice President, Data Science
Anthem

Daniel Yang, MD
Program Fellow, Patient Care
Moore Foundation

Maryan Zirkle, MD, MS, MA
Senior Program Officer
Patient-Centered Outcomes 

Research Institute

Observers and Web Participants:
Jia Chen, PhD
Technology Strategy, Watson Health 

Innovation
IBM Watson Health Group

Catherine Ordun, MPH, MBA
Senior Data Scientist
Booz Allen Hamilton

Nigam H. Shah, MBBS, PhD
Associate Professor of Medicine
Stanford University

Ernest Sohn, MS
Chief Data Scientist
Booz Allen Hamilton

David Sontag, PhD, SM
Principal Investigator, Computer 

Science & Artificial Intelligence 
Laboratory

Massachusetts Institute of Technology

National Academy of 
Medicine Staff:

Urooj Fatima
Senior Program Assistant
National Academy of Medicine

Emma Fine
Senior Program Assistant
National Academy of Medicine

Gwen Hughes
Senior Program Assistant
National Academy of Medicine

Danielle Whicher, PhD, MHS
Senior Program Officer
National Academy of Medicine

Michael McGinnis, MD, MPP
Executive Director, Leadership 

Consortium for a Value & Science-
Driven Health System
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Mahnoor (Noor) Ahmed, MEng, is an associate program officer for the 
National Academy of Medicine’s (NAM) Leadership Consortium: Collaboration 
for a Value & Science-Driven Learning Health System. She oversees work in the 
Leadership Consortium’s science and evidence mobilization domains, which are 
respectively focused on advancing a robust digital infrastructure and promoting 
the systematic capture and application of real-world evidence in support of a 
learning health system. Prior to joining the NAM, Ms. Ahmed worked at the 
Center for Medical Interoperability and Hospital Corporation of America 
guiding the effective and ethical development and integration of technology in 
clinical practice. She holds a BA in neuroscience from Vanderbilt University and 
an ME in biomedical engineering from Duke University.

Andrew Auerbach MD, MPH, is a professor of medicine at the University 
of California, San Francisco (UCSF), School of Medicine in the Division of 
Hospital Medicine, where he is the chair of the Clinical Content Oversight 
Committee for UCSF Health, the operational group responsible for developing 
and implementing electronic health record tools across the UCSF Health 
enterprise. Dr. Auerbach is a widely recognized leader in hospital medicine, 
having authored or co-authored the seminal research describing effects of 
hospital medicine systems on patient outcomes, costs, and care quality. He leads 
a 13-hospital research collaborative focused on new discoveries in health care 
delivery models in acute care settings and continues an active research-mentoring 
program at UCSF. In addition, Dr. Auerbach serves as editor-in-chief of the 
Journal of Hospital Medicine, the flagship peer-reviewed publication for the field 
of hospital medicine. Dr. Auerbach’s research has been published in prominent 
journals including the New England Journal of Medicine, JAMA, Annals of Internal 
Medicine, and Archives of Internal Medicine. He has received the Mack Lipkin 
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Award for outstanding research as a fellow and the Western Society for Clinical 
Investigation Outstanding Investigator award, and is a member of the American 
Society for Clinical Investigation.

Andrew Beam, PhD, is an assistant professor in the Department of Epidemiology 
at the Harvard T.H. Chan School of Public Health, with secondary appointments 
in the Department of Biomedical Informatics at the Harvard Medical School and 
the Department of Newborn Medicine at Brigham and Women’s Hospital. His 
research develops and applies machine learning methods to extract meaningful 
insights from clinical and biological datasets, and he is the recipient of a Pioneer 
Award from the Robert Wood Johnson Foundation for his work on medical 
artificial intelligence. Previously he was a senior fellow at Flagship Pioneering 
and the founding head of machine learning at VL56, a Flagship-backed venture 
that seeks to use machine learning to improve our ability to engineer proteins. 
He earned his PhD in 2014 from North Carolina State University for work 
on Bayesian neural networks, and he holds degrees in computer science (BS), 
computer engineering (BS), electrical engineering (BS), and statistics (MS), also 
from North Carolina State University. He completed a postdoctoral fellowship in 
biomedical informatics at the Harvard Medical School and then served as a junior 
faculty member. Dr. Beam’s group is principally concerned with improving, 
streamlining, and automating decision making in health care through the use of 
quantitative, data-driven methods. He does this through rigorous methodological 
research coupled with deep partnerships with physicians and other members of 
the health care workforce. As part of this vision, he works to see these ideas 
translated into decision-making tools that doctors can use to better care for their 
patients.

Paul Bleicher, MD, PhD, is a strategic advisor to OptumLabs. Dr. Bleicher was 
formerly the chief executive officer of OptumLabs since its inception. Prior to 
OptumLabs, he was the chief medical officer for Humedica, a next-generation 
clinical informatics company. He also co-founded and was a leader at Phase 
Forward, which was instrumental in transforming pharmaceutical clinical trials 
from paper to the web. Dr. Bleicher has served as a leader in industry organizations 
such as the National Academy of Medicine’s Leadership Consortium for Value 
& Science-Driven Health Care and the Drug Information Association. He has 
received numerous awards for his industry leadership. Dr. Bleicher holds a BS 
from Rensselaer, as well as an MD and a PhD from the University of Rochester 
School of Medicine and Dentistry. He began his career as a physician/investigator 
and an assistant professor at the Massachusetts General Hospital and the Harvard 
Medical School.
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Wendy Chapman, PhD, earned her bachelor’s degree in linguistics and her PhD 
in medical informatics from the University of Utah in 2000. From 2000–2010, 
she was a National Library of Medicine (NLM) postdoctoral fellow and then 
a faculty member at the University of Pittsburgh. She joined the Division of 
Biomedical Informatics at the University of California, San Diego, in 2010. In 
2013, Dr. Chapman became the chair of the University of Utah’s Department 
of Biomedical Informatics. Dr. Chapman’s research focuses on developing and 
disseminating resources for modeling and understanding information described 
in narrative clinical reports. She is interested not only in better algorithms for 
extracting information out of clinical text through natural language processing 
(NLP) but also in generating resources for improving the NLP development 
process (such as shareable annotations and open-source toolkits) and in developing 
user applications to help non-NLP experts apply NLP in informatics-based tasks 
like clinical research and decision support. She has been a principal investigator on 
several National Institutes of Health grants from the NLM, National Institute for 
Dental and Craniofacial Research, and the National Institute for General Medical 
Sciences. In addition, she has collaborated on multi-center grants, including the 
ONC SHARP Secondary Use of Clinical Data and the iDASH National Center 
for Biomedical Computing. Dr. Chapman is a principal investigator and a co-
investigator on a number of U.S. Department of Veterans Affairs (VA) Health 
Services Research and Development grant proposals extending the development 
and application of NLP within the VA. A tenured professor at the University of 
Utah, Dr. Chapman continues her research in addition to leading the Department 
of Biomedical Informatics. Dr. Chapman is an elected fellow of the American 
College of Medical Informatics and currently serves as treasurer and was the 
previous chair of the American Medical Informatics Association Natural Language 
Processing Working Group.

Jonathan Chen, MD, PhD, practices medicine for the concrete rewards of 
caring for real people and to inspire research focused on discovering and 
distributing the latent knowledge embedded in clinical data. Dr. Chen co-
founded a company to translate his computer science graduate work into an 
expert system for organic chemistry, with applications from drug discovery to an 
education tool for students around the world. To gain perspective tackling societal 
problems in health care, he completed training in internal medicine and a research 
fellowship in medical informatics. He has published influential work in the New 
England Journal of Medicine, JAMA, JAMA Internal Medicine, Bioinformatics, Journal of 
Chemical Information and Modeling, and the Journal of the American Medical Informatics 
Associations, with awards and recognition from the National Institutes of Health’s 
Big Data 2 Knowledge initiative, the National Library of Medicine, the American 
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Medical Informatics Association, the Yearbook of Medical Informatics, and the 
American College of Physicians, among others. In the face of ever escalating 
complexity in medicine, informatics solutions are the only credible approach to 
systematically address challenges in health care. Tapping into real-world clinical 
data like electronic medical records with machine learning and data analytics will 
reveal the community’s latent knowledge in a reproducible form. Delivering this 
back to clinicians, patients, and health care systems as clinical decision support 
will uniquely close the loop on a continuously learning health system. Dr. Chen’s 
group seeks to empower individuals with the collective experience of the many, 
combining human and artificial intelligence approaches that will deliver better 
care than either can do alone.

Guilherme Del Fiol, MD, PhD, is currently an associate professor and the 
vice-chair of research in the University of Utah’s Department of Biomedical 
Informatics. Prior to the University of Utah, Dr. Del Fiol held positions in clinical 
knowledge management at Intermountain Healthcare and as faculty at the Duke 
Community and Family Medicine Department. Since 2008, he has served as an 
elected co-chair of the Clinical Decision Support Work Group at Health Level 
International (HL7). He is also an elected fellow of the American College of 
Medical Informatics and a member of the Comprehensive Cancer Center at 
Huntsman Cancer Institute. Dr. Del Fiol’s research interests are in the design, 
development, evaluation, and dissemination of standards-based clinical decision 
support interventions. He has been focusing particularly in clinical decision 
support for cancer prevention. He is the lead author of the HL7 Infobutton 
Standard and the project lead for OpenInfobutton, an open-source suite of 
infobutton tools and web services, which is in production use at several health care 
organizations throughout the United States, including Intermountain Healthcare, 
Duke University, and the Veterans Health Administration. His research has been 
funded by various sources including the National Library of Medicine, the 
National Cancer Institute, the Agency for Healthcare Research and Quality, the 
Centers for Medicare & Medicaid Services, and the Patient-Centered Outcomes 
Research Institute. He earned his MD from the University of Sao Paulo, Brazil; 
his MS in computer science from the Catholic University of Parana, Brazil; and 
his PhD in biomedical informatics from the University of Utah.

Hossein Estiri, PhD, is a research fellow with the Laboratory of Computer 
Science (LCS) and an informatics training fellow of the National Library of 
Medicine. Dr. Estiri’s research involves designing data-driven systems for clinical 
decision making and health care policy. His recent work has focused on designing 
and developing visual analytics programs (VET, DQe-c, DQe-v, and DQe-p) 
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to explore data quality in electronic health record (EHR) data. His research with 
LCS is focused on applying statistical learning techniques (Deep Learning and 
unsupervised clustering) and data science methodologies to design systems that 
characterize patients and evaluate EHR data quality. Dr. Estiri holds a PhD in 
urban planning and a PhD track in statistics from University of Washington. 
Prior to joining LCS, Dr. Estiri completed a 2-year postdoctoral fellowship with 
the University of Washington’s Institute of Translational Health Sciences and 
Department of Biomedical Informatics.

James Fackler, MD, is an associate professor of anesthesiology and critical care 
medicine and pediatrics at the Johns Hopkins University School of Medicine. 
His areas of clinical expertise include acute respiratory distress syndrome, novel 
respiratory therapies, and signal fusion and monitoring. Dr. Fackler received 
his undergraduate degree in biology from the University of Illinois and earned 
his MD from Rush Medical College in Chicago. He completed his residency 
in anesthesiology and performed a fellowship in pediatric intensive care and 
pediatric anesthesia at the Johns Hopkins University School of Medicine. 
Dr. Fackler joined the Johns Hopkins faculty in 2006. He worked for the Cerner 
Corporation from 2002 to 2006 and left the position of vice president to return to 
academic medicine. He founded Oak Clinical Informatics Systems and consults 
for other device and information integration companies. Dr. Fackler’s research 
interests include optimizing patient surgical services by analyzing mathematical 
models of patient flow through hospitals, on either a scheduled or an emergency 
basis. He serves as the editor for Pediatric Critical Care Medicine and as an ad hoc 
journal reviewer for many notable publications including New England Journal of 
Medicine and Critical Care Medicine. He is a member of the American Association 
of Artificial Intelligence, the American Medical Informatics Association, 
and the Society for Critical Care Medicine. Dr. Fackler is a frequent lecturer 
and panelist on the subject of critical care informatics. He is an expert in data 
integration.

Stephan Fihn, MD, MPH, attended St. Louis University School of Medicine 
and completed an internship, residency, and chief residency at the University of 
Washington (UW). He was a Robert Wood Johnson Foundation Clinical Scholar 
and earned a master’s degree in public health at UW where he is professor of 
medicine and health services and the head of the Division of General Internal 
Medicine. During a 36-year career with the U.S. Department of Veterans Affairs 
(VA), Dr. Fihn held a number of clinical, research, and administrative positions. 
He directed one of the first primary care clinics in the VA and for 18 years led the 
Northwest VA Health Services Research & Development Center of Excellence 
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at the Seattle VA. He also served several national roles in the Veterans Health 
Administration including acting chief research and development officer, chief 
quality and performance officer, director of analytics and business, and director 
of clinical system development and evaluation. His own research has addressed 
strategies for improving the efficiency and quality of primary and specialty 
medical care and understanding the epidemiology of common medical problems. 
He received the VA Undersecretary’s Award for Outstanding Contributions in 
Health Services Research in 2002. He has published more than 300 scientific 
articles and book chapters and two editions of a textbook titled Outpatient Medicine. 
He is deputy editor of JAMA Network Open. He is active in several academic 
organizations including the Society of General Internal Medicine (SGIM) (past-
president), the American College of Physicians (fellow), the American Heart 
Association (fellow), and AcademyHealth. He received the Elnora M. Rhodes 
Service Award and the Robert J. Glaser Award from SGIM.

Anna Goldenberg, MA, PhD, is a Russian-born computer scientist and an 
associate professor at the University of Toronto’s Department of Computer 
Science and the Department of Statistics, a senior scientist at the Hospital 
for Sick Children’s Research Institute, and the associate research director for 
health at the Vector Institute for Artificial Intelligence. She is the first chair 
in biomedical informatics and artificial intelligence at the Hospital for Sick 
Children. Dr. Goldenberg completed a master’s in knowledge discovery and data 
mining, followed by a PhD in machine learning at Carnegie Mellon University 
in Pittsburgh, where her thesis explored scalable graphical models for social 
networks. Dr. Goldenberg moved to Canada in 2008 as a postdoctoral fellow. 
She is currently appointed as an associate professor at the University of Toronto’s 
Department of Computer Science and the Department of Statistics and a scientist 
at the Hospital for Sick Children’s Research Institute. Her laboratory explores 
how machine learning can be used to map the heterogeneity seen in various 
human diseases, specifically to develop methodologies to identify patterns in 
collected data and improve patient outcomes. She has more than 50 publications 
in peer-reviewed journals. Similarity Network Fusion, a networking method 
devised by her research group is the first data integration method developed to 
integrate patient data that improved survival outcome predictions in different 
cancers. She has an h-index of 17, and her research has been cited more than 
2,000 times. In 2017, Dr. Goldenberg was appointed as a new Tier 2 CIHR-
funded Canada Research Chair in Computational Medicine at the University 
of Toronto. On January 15, 2019, Dr. Goldenberg was named the first chair 
in biomedical informatics and artificial intelligence at the Hospital for Sick 
Children, which is the first of its kind to exist in a Canadian children’s hospital. 
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This position is partially funded by a $1.75 million donation from Amar Varma 
(a Toronto entrepreneur whose newborn son underwent surgery at the Hospital 
for Sick Children).

Seth Hain, MS, leads Epic’s analytics and machine learning research and 
development. This includes business intelligence tools, data warehousing 
software, and a foundational platform for deploying machine learning across Epic 
applications. Alongside a team of data scientists and engineers, he focuses on a 
variety of use cases ranging from acute care and population health to operations 
and improving workflow efficiency.

Jaimee Heffner, PhD, is a clinical psychologist who researches tobacco-cessation 
interventions for populations who experience health disparities, including people 
with mental health conditions, low-income veterans, and sexual and gender 
minorities. Much of her work focuses on new behavioral treatments such as 
acceptance and commitment therapy and behavioral activation. She develops 
methods to deliver these interventions—such as websites, smartphone apps, and 
other forms of technology—to improve the accessibility of treatment for all 
tobacco users. Her research interests also include implementation of tobacco-
cessation interventions in the novel setting of lung cancer screening.

Sonoo Thadaney Israni, MBA, is an intrapreneur at Stanford University. She 
works with faculty leadership to thought partner and launches new centers, 
initiatives, academic programs, and more. Currently, she serves as the executive 
director for Dr. Abraham Verghese’s portfolio, including a new center—Presence: 
The Art and Science of Human Connection in Medicine. She focuses on the 
intersection of technology, equity, and inclusion. Her intrapreneurial successes at 
Stanford include the MSc in Community Health and Prevention Research; the 
Stanford Women and Sex Differences in Medicine Center; the Diversity and First-
Gen Office (serving Stanford students who are first in their family to attend college); 
the Restorative Justice Pilot; and more. She teaches coursework in leveraging 
conflict for constructive change, leadership skills, and mediation. Ms. Israni co-
chairs the National Academy of Medicine’s Artificial Intelligence in Healthcare 
Working Group and co-shepherds its Technology Across the Lifecourse Group. 
She also serves on the Association of American Medical Colleges Restorative 
Justice for Academic Medicine Committee teaching curricula to address diversity 
in health care. She spent more than 25 years in Silicon Valley before coming to 
Stanford University in 2008. Ms. Israni’s academic work includes an MBA, a BA 
in psychology with minors in sociology and education, and a postbaccalaureate 
in mass communications. She is also a trained mediator and restorative justice 
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practitioner for the State of California, serving as the co-chair of the Commission 
on Juvenile Delinquency and Prevention for San Mateo County.

Edmund Jackson, PhD, is the HCA Healthcare chief data scientist and the vice 
president of data and analytics within the Clinical Services Group. His education 
is a BscEng and MScEng, both in electronic engineering, followed by a PhD in 
statistical signal processing from Cambridge University. In that work, Dr. Jackson 
focused on applications of sequential Markov chain methods in bioinformatics. 
He pursued a career as a quantitative analyst in the hedge fund industry for 
several years. More recently, Dr. Jackson has sought more meaningful work and 
found it at HCA, where his remit is to create algorithms and systems to improve 
the quality of clinical care, operational efficiency, and financial performance of 
the firm through better utilization of data.

Jeffrey Klann, PhD, focuses his work with the Laboratory of Computer Science 
on knowledge discovery for clinical decision support, sharing medical data to 
improve population health, revolutionizing user interfaces, and making personal 
health records viable. Dr. Klann holds two degrees in computer science from 
the Massachusetts Institute of Technology and a PhD from Indiana University 
in health informatics. He completed a National Library of Medicine Research 
Training Fellowship concurrently with his PhD. He holds faculty appointments 
at the Harvard Medical School and Massachusetts General Hospital.

Rita Kukafka, DrPH, MA, FACMI, is a professor of biomedical informatics 
and sociomedical sciences at the Mailman School of Public Health at Columbia 
University. Dr. Kukafka received her bachelor’s degree in health sciences 
from Brooklyn College, a master’s degree in health education from New York 
University, and a doctorate in public health with a concentration in sociomedical 
sciences from the Mailman School of Public Health at Columbia University. 
Nearly a decade after receiving her doctorate, she returned to Columbia where she 
completed a National Library of Medicine postdoctoral fellowship, and received 
a master’s degree in biomedical informatics. Having worked at public health 
agencies and academia, and leading large-scale population health interventions, 
she was convinced then and remains convinced that public health’s “winnable 
battles” are amenable to informatics solutions. For the duration of her training to 
the present, Dr. Kukafka has been involved in leadership roles at the national level 
to influence the growth and direction of public health informatics. At Columbia, 
Dr. Kukafka holds joint appointments with the Department of Biomedical 
Informatics and the Mailman School of Public Health (sociomedical sciences). 
She served as the director of the graduate training program from 2008 to 2013. 
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She is also the director of the Health Communication and Informatics Laboratory 
at the Department of Biomedical Informatics and certificate lead for Public 
Health Informatics at Mailman. Her research interests focus on patient and 
community engagement technologies, risk communication, decision science, 
and implementation of health promoting and disease prevention technologies 
into clinical workflow. Her projects include developing decision aids, portals 
for community engagement, requirement and usability evaluation, and mixed-
method approaches to studying implementation and outcomes. Dr. Kukafka is an 
elected member of the American College of Medical Informatics and the New 
York Academy of Medicine. She has been an active contributor to the American 
Medical Informatics Association (AMIA), and is an AMIA board member. She 
has chaired the Consumer Health Informatics Working group for AMIA, and 
served on an Institute of Medicine committee that authored the report Who Will 
Keep the Public Healthy?: Educating Public Health Professionals for the 21st Century. 
Dr. Kukafka has authored more than 100 articles, chapters, and books in the 
field of biomedical informatics including a textbook (Consumer Health Informatics: 
Informing Consumers and Improving Health Care, 2005, with D. Lewis, G. Eysenbach, 
P. Z. Stavri, H. Jimison, and W. V. Slack. New York: Springer).

Hongfang Liu, PhD, is a professor of biomedical informatics in the Mayo 
Clinic College of Medicine, and is a consultant in the Department of Health 
Sciences Research at the Mayo Clinic. As a researcher, she is leading the Mayo 
Clinic’s clinical natural language processing (NLP) program with the mission 
of providing support to access clinical information stored in unstructured text 
for research and practice. Administratively, Dr. Liu serves as the section head for 
Medical Informatics in the Division of Biomedical Statistics and Informatics. 
Dr. Liu’s primary research interest is in biomedical NLP and data normalization. 
She has been developing a suite of open-source NLP systems for accessing clinical 
information, such as medications or findings from clinical notes. Additionally, 
she has been conducting collaborative research in the past decade in utilizing 
existing knowledge bases for high-throughput -omics profiling data analysis and 
functional interpretation. Dr. Liu’s work in informatics has resulted in informatics 
systems that unlock clinical information stored in clinical narratives. Her work 
accelerates the pace of knowledge discovery, implementation, and delivery for 
improved health care.

Michael Matheny, MD, MS, MPH, is a practicing general internist and a 
medical informatician at Vanderbilt University and the Tennessee Valley Healthcare 
System of the U.S. Department of Veterans Affairs (VA). He received a BS in 
chemical engineering and an MD from the University of Kentucky, completed 
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internal medicine residency training at St. Vincent’s, Indianapolis, Indiana, and 
was a National Library of Medicine Biomedical Informatics Fellow at the 
Decision Systems Group at Brigham & Women’s Hospital, Boston, Massachusetts, 
during which time he completed a master’s degree in public health at Harvard 
University as well as a master’s degree of science in biomedical informatics at 
the Massachusetts Institute of Technology. He has expertise in developing and 
adapting methods for postmarketing medical device surveillance, and has been 
involved in the development, evaluation, and validation of automated outcome 
surveillance statistical methods and computer applications. He is leading the 
OMOP extract, transform, and load team within VINCI for the national Veterans 
Health Administration data, and is a co-principal investigator for the pScanner 
CDRN Phase 2. He also is currently independently funded for two VA HSR&D 
IIR’s in automated surveillance and data visualization techniques for acute kidney 
injury following cardiac catheterization and patients with cirrhosis. His key focus 
areas include natural language processing, data mining, and population health 
analytics as well as health services research in acute kidney injury, diabetes, and 
device safety in interventional cardiology.

Douglas McNair, MD, PhD, serves as a senior advisor in quantitative 
sciences—Analytics Innovation in Global Health at the Bill & Melinda Gates 
Foundation. He assists the foundation’s research and development in drug and 
vaccine development for infectious diseases, childhood diseases, and neglected 
tropical diseases. Current projects include product development programs in 
discovery and translational sciences involving Bayesian networks. His activity 
also includes machine learning and modeling of health economics, collaborating 
with the Global Development division. Previously, Dr. McNair was the president 
of Cerner Math Inc., responsible for the artificial intelligence components 
of Cerner’s electronic health record (EHR) solutions, discovering artificial 
intelligence predictive models from real-world de-identified EHR-derived big 
data. Dr. McNair is the lead inventor on more than 100 patents and pending 
patent applications, including several involving Bayesian predictive models for 
clinical diagnostics.

Eneida Mendonça, MD, PhD, received her MD from the Federal University 
of Pelotas in Brazil and her PhD in biomedical informatics in 2002 from 
Columbia University in New York. Dr. Mendonça pioneered the use of natural 
language processing in both biomedical literature and in electronic medical 
record narratives in order to identify knowledge relevant to medical decision 
making in the context of patient care. In addition, she has devoted many 
years to developing innovative clinical information systems that have been 
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integrated in New York-Presbyterian Hospital, Columbia University Medical 
Center, and Cornell Medical Center. Most recently, Dr. Mendonça was an 
associate professor of pediatrics at the University of Chicago. Dr. Mendonça will 
begin to develop a program in medical/clinical informatics in both research and 
training under the National Institutes of Health–funded Institute for Clinical and 
Translational Research (ICTR) in which the Department is a core unit and the 
College of Engineering is an ICTR partner.

Joni Pierce, MBA, is a principal at J. Pierce and Associates and adjunct faculty 
at the University of Utah’s David Eccles School of Business. Ms. Pierce received 
her MBA from the University of Utah and is currently pursuing a master’s degree 
in biomedical informatics and clinical decision support.

W. Nicholson Price II, JD, PhD, is an assistant professor of law at the University 
of Michigan Law School, where he teaches patents and health law and studies 
life science innovation, including big data and artificial intelligence in medicine. 
Dr. Price is co-founder of regulation and innovation in the biosciences; co-
chair of the Junior IP Scholars Association; co-lead of the Project on Precision 
Medicine, Artificial Intelligence, and Law at the Harvard Law School’s Petrie-
Flom Center for Health Law Policy, Biotechnology, and Bioethics; and a core 
partner at the University of Copenhagen’s Center for Advanced Studies in 
Biomedical Innovation Law.

Joachim Roski, PhD, MPH, delivers solutions in the areas of care 
transformation, health care business, and outcome analytics; quality/safety; and 
population health improvement. He supports a range of clients in their health 
care planning, improvement, strategic measurement, analysis, and evaluation 
needs. His clients include the Military Health Service, the Veterans Health 
Administration, the Centers for Medicare & Medicaid Services, The Office of 
the National Coordinator of Health Information Technology, and others. He is a 
well-published national expert who speaks frequently on the topics of measuring 
and improving health care costs, quality/safety, outcomes, and value.

Suchi Saria, PhD, MSc, is a professor of machine learning and health care at 
Johns Hopkins University, where she uses big data to improve patient outcomes. 
Her interests span machine learning, computational statistics, and its applications 
to domains where one has to draw inferences from observing a complex, real-
world system evolve over time. The emphasis of her research is on Bayesian and 
probabilistic graphical modeling approaches for addressing challenges associated 
with modeling and prediction in real-world temporal systems. In the past 7 years, 
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she has been particularly drawn to computational solutions for problems in health 
informatics as she sees a tremendous opportunity there for high impact work. Prior 
to joining Johns Hopkins, she earned her PhD and master’s degree at Stanford 
University in computer science, working with Dr. Daphne Koller. She also spent 
1 year at Harvard University collaborating with Dr. Ken Mandl and Dr. Zak 
Kohane as a National Science Foundation Computing Innovation Fellow. While 
in the Valley, she also spent time as an early employee at Aster Data Systems, a big 
data startup acquired by Teradata. She enjoys consulting and advising data-related 
startups. She is an investor and an informal advisor to Patient Ping.

Nigam Shah, MBBS, PhD, is an associate professor of medicine (biomedical 
informatics) at Stanford University, an assistant director of the Center for Biomedical 
Informatics Research, and a core member of the Biomedical Informatics 
Graduate Program. Dr. Shah’s research focuses on combining machine learning 
and prior knowledge in medical ontologies to enable use cases of the learning 
health system. Dr. Shah received the American Medical Informatics Association 
New Investigator Award for 2013 and the Stanford Biosciences Faculty Teaching 
Award for outstanding teaching in his graduate class on data-driven medicine. 
Dr. Shah was elected into the American College of Medical Informatics in 2015 
and was inducted into the American Society for Clinical Investigation in 2016. 
He holds an MBBS from Baroda Medical College, India, a PhD from Penn State 
University, and completed postdoctoral training at Stanford University.

Ranak Trivedi, MA, MS, PhD, is a clinical health psychologist and a health 
services researcher interested in understanding how families and patients can better 
work together to improve health outcomes for both. Dr. Trivedi is also interested 
in identifying barriers and facilitators of chronic illness self-management, and 
developing family centered self-management programs that address the needs of 
both patients and their family members. Dr. Trivedi is also interested in improving 
the assessment and treatment of mental illnesses in primary care settings and 
evaluating programs that aim to improve these important activities.

Danielle Whicher, PhD, MHS, is a health researcher at Mathematica Policy 
Research. In this role, she participates in large-scale evaluations of national and 
state health payment and delivery reform initiatives. She is also engaged in efforts 
to evaluate health information technologies. Prior to joining Mathematica, 
Dr. Whicher was a senior program officer for the National Academy of Medicine 
(NAM) Leadership Consortium for a Value & Science Driven Health System, 
where she directed policy projects on a variety of topics related to the use of 
science and technology to inform health and health care. Before her work at the 
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NAM, Dr. Whicher held positions at the Patient-Centered Outcomes Research 
Institute, the Johns Hopkins Berman Institute for Bioethics, and the Center for 
Medical Technology Policy. She has a PhD and an MHS in health policy and 
management from the Johns Hopkins Bloomberg School of Public Health and 
currently serves as a co-editor for the journal Value in Health. Her work has been 
published in a variety of reports and peer-reviewed journals, including Annals of 
Internal Medicine, Medical Care, PharmacoEconomics, Clinical Trials, and The Journal of 
Law, Medicine, & Ethics.

Jenna Wiens, PhD, is a Morris Wellman Assistant Professor of Computer Science 
and Engineering at the University of Michigan in Ann Arbor. She is currently 
the head of the Machine Learning for Data-Driven Decisions research group. 
Dr. Wiens’s primary research interests lie at the intersection of machine learning 
and health care. She is particularly interested in time-series analysis, transfer/
multitask learning, and causal inference. The overarching goal of her research 
agenda is to develop the computational methods needed to help organize, process, 
and transform data into actionable knowledge. Dr. Wiens received her PhD in 
2014 from the Massachusetts Institute of Technology (MIT). At MIT, she worked 
with Professor John Guttag in the Computer Science and Artificial Intelligence 
Lab. Her PhD research focused on developing accurate patient risk-stratification 
approaches that leverage spatiotemporal patient data, with the ultimate goal of 
discovering information that can be used to reduce the incidence of health care–
associated infections. In 2015, Dr. Wiens was named one of Forbes’ 30 under 30 in 
Science and Healthcare; she received a National Science Foundation CAREER 
Award in 2016; and this past year was named to the MIT Tech Review’s list of 35 
Innovators Under 35.
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